

CERTIFICATION FOR DESIGN: RESHAPING THE TESTING PYRAMID

Novel composite substructure testing approaches using multi-camera full-field imaging

2024 SEM Annual Conference and Exposition, Vancouver, WA

<u>Tobias Laux</u>, Riccardo Cappello, Jack S Callaghan, Geir Ólafsson, Stephen W Boyd, Duncan A Crump, Andrew F Robinson, Ole T Thomsen, Janice M Dulieu-Barton

tobi.laux@bristol.ac.uk/riccardo.cappello@bristol.ac.uk

Next generation testing pyramids

- Design & certification will increasingly rely on integrated *physical* and *virtual* testing
- Requirement for *data fusion/correlation* techniques to efficiently bridge the gap
- Multi-camera, full-field imaging can unlock the potential of integrated testing & modelling at subcomponent scale

To advance and demonstrate the potential of structural evaluation on the subcomponent scale using multi-camera full-field imaging

- 1) Definition of substructure demonstrator
- 2) Experimental set-up and procedures
- 3) Finite element model (FEM)
- 4) Full-field data fusion to assess gap between experiment and FEM (DIC)
- 5) Challenges of imaging large structures (DIC)
- 6) Preliminary results on composite T-joint (DIC & TSA)
- 7) Conclusions & future work

University of

Novel T-joint test set-up

Imaging set-up composite T-joint

Mitigating effects of heat waves on DIC

Structures

es il

Loading and DIC/IR imaging procedure

Engineering and Physical Science Research Counci

 $F_3 = 0.833 F_1$

University of BRISTOL

T-joint subcomponent FE model

University of Southampto

Full-field data fusion for integrated testing & modelling

University of Southampton

Structures

Comprehensive initial model evaluation

- Most μ_{e} within +/-50 $\mu\epsilon$
- Exception is ε_y in the web ROI where μ_e builds with load up to 200 $\mu\epsilon$, indicating a significant discrepancy between model and experiment

Structures **2025**

Updated FE model

Engineering and Physical Sciences Research Council

Combined errors (ε_x , ε_y , γ_{xy}) – web

Combined errors (ε_x , ε_y , γ_{xy}) – web

 $= 10kN, P_3 = 0kN \qquad P_1 = 10kN, P_3 = 8.3kN \qquad P_1 = 15kN, P_3 = 8.3kN \qquad P_1 = 15kN, P_3 = 12.5kN \qquad P_1 = 20kN, P_3 = 12.5kN \qquad P_1 = 20kN, P_3 = 16.6kN \qquad P_1 = 25kN, P_3 = 16.6kN \qquad P_1 = 25kN, P_3 = 20.8kN \qquad P_1 = 20kN, P_2 = 20kN, P_3 = 16.6kN \qquad P_1 = 25kN, P_2 = 20.8kN \qquad P_2 = 20kN, P_3 = 10.6kN \qquad P_2 = 20kN, P_3 = 20.8kN \qquad P_2 = 20kN, P_3 = 10.6kN \qquad P_3 = 20.8kN \qquad P_4 = 20kN, P_3 = 10.6kN \qquad P_4 = 20kN, P_3 = 10.6kN \qquad P_4 = 20kN, P_4$

	-4.0 ± 42.0 με	-3.0 ± 32.0 με	-8.0 ± 39.0 με	-8.0 ± β8.0 με	-15.0 <u>#</u> 46.0 με	-12.0 <u>#</u> 38.0 με	-16.0 <u>#</u> 40.0 με	-17.0 <u></u> 44.0 με
0.015 -	-5.0 ± 43.0 με	-13.0 ± 36.0 με	-19.0 ± 46.0 με	-25.0 <u>+</u> 47.0 με	-36.0 ± 58.0 με	-35.0 ± 54.0 με	-42.0 ± 58.0 με	48.0 <u>+</u> 61.0 με

What has been achieved with the Steel T-joint?

- Loading and imaging procedures deliver high quality data
- Gap between FEM and experimental data has been reduced
- The comprehensive improvement is quantifiable thanks to full-field imaging and data fusion
- Raised confidence in experimental set-up, modelling assumptions, and entire mechanical system

So, let's break the composite specimen then 😊

Composite specimen before initial failure

Engineering and Physical Science Research Council

Forensic failure analysis

Post failure: ply drop delamination **F1**

Undamaged specimen

Damaged specimen

Reduction of thermoelastic signal on ply drop

Increase of thermoelastic signal in the web, indicating stress redistribution

0

Conclusions & future work

- Structures
- Full-field imaging (DIC & TSA) and data fusion enables integrated testing and modelling at the subcomponent scale, providing an efficient and comprehensive means of structural evaluation and model validation.
- High quality DIC data on the subcomponent scale is challenging to obtain due to compounding sources of uncertainty (short focal length lenses, thermal errors, etc.)
- Future work: application of farmwork to composite T-joint experimental data; can we repeat the steel T-joint work given the increased uncertainties associated with the composite specimen, *i.e.* material properties, defects?

CERTIFICATION FOR DESIGN: RESHAPING THE TESTING PYRAMID

Thank you for your attention. Any questions?

Contact: tobi.laux@bristol.ac.uk/riccardo.cappello@bristol.ac.uk

RESHAPING THE TESTING PYRAMID