

CIMComp **EPSRC Future Composites** lanufacturing Research Hub

Considerations and Potential for Inductive Sensing Evaluation of **Carbon Fibre Composites**

Robert Hughes

Lecturer in Non-Destructive Testing Robert.hughes@bristol.ac.uk Ultrasonics & NDT Group (UNDT) Mechanical Engineering University of Bristol

Non-Destructive Testing of CFRP

bristol.ac.uk

Fibre Reinforced Polymers (FRPs)

Structure (Alignment)

bristol.ac.uk

Common manufacturing defects*

Side-profile micrograph of wrinkling

Credit: Ege Arabul, PhD Candidate, University of Bristol

*S. Meister, composite manufacturing, 2021

Inductive Sensing (Eddy-Current Testing)

- Non-contact
- High sensitivity
- High-speed
- Safe
- Simple data-analysis*
- Sub-surface penetration**
- * Anomaly detection

** Within a few mm

Hughes, R.R, EngD Thesis. University of Warwick, 2015.

ECT of CFRP

bristol.ac.uk

7

D. Wu, F. Cheng, F. Yang, and C. Huang, "Non-destructive testing for carbon-fibre-reinforced plastic (CFRP) using a novel eddy current probe," Compos. Part B Eng., vol. 177, no. September, p. 107460, 2019.

Considerations for Sensing of AFP

- C1: Ply stacking sequence
- C2: Inter-ply contact
- C3: Fibre density variations

C2: Inter-ply Contact

Natural variability in local fibre volume fraction

Contributes to coherent noise

C3: Fibre Density

X-ray CT Data:

ECT Data:

Courtesy: Fernando Alvarez Borges, Mark Mavrogordato & Ian Sinclair, μ Vis, University of Southampton, UK

ECT of CFRP

ECT of Cured C-Spar

Credit: William Rees, NCC

bristol.ac.uk

Sensor Design – Vast Parameter Space

H. Kosukegawa, et.al, Philos. Trans. R. Soc. 2020

Challenges & Opportunities

- 1. Application specific sensor design
 - a) Wide variety of materials, stacking sequences, defects
 - b) Multitude of design variables (one sensor does not fit all applications)
 - c) Requires effective modelling for virtual design optimisation
- 2. Industrial acceptance of ECT technology for CFRP inspection
 - a) Requires repeatable & reliable process for (1)
- 3. Advanced measurement inversion (electrical \rightarrow structural properties)
 - a) Requires accurate models of EC interactions with CFRP

Potential

Modelling for sensor design

bristol.ac.uk

Simulating Ply Structure

- Simulating coherent structural noise
- Enables evaluation of defect selectivity

Yi, et.al., Comp. B., 2023

Simulating Wrinkling

Mussatayev, M., et.al, Comp. B., 2023

bristol.ac.uk

......

Measuring Wrinkling

Mussatayev, M., et.al, Comp. B., 2023

Virtual Sensor Comparison

bristol.ac.uk

Mussatayev, M., et.al, Comp. B., 2023

Conclusions & Future work

- Developing a model-assisted sensor design process
- Demonstrated design comparison for wrinkling and waviness sensors

Next steps:

- Sensor design optimisation for target defects
- Greater understanding required of relationship between fibre structure and electrical properties

Acknowledgements

- Ege Arabul
- Atul Sharma
- Meirbek Mussatayev
- Qiuji Yi

- Vincent Maes
- Mark Fitzgerald
- James Kratz
 - Paul Wilcox

- 1. D. Maass, Progress in automated ply inspection of AFP layups, Reinf. Plast., vol. 59, no. 5, pp. 242–245, Sep. 2015
- 2. Hughes, R.R, Drinkwater, Smith, Characterisation of carbon fibre-reinforced polymer composites through radon-transform analysis of complex eddy-current data, Comp. B, 2018
- 3. S. Meister, composite manufacturing, 2021
- 4. Yin, W., Withers, P.J., Sharma, U., & Peyton, A.J. (2009). IEEE Transactions on Instrumentation and Measurement,
- 5. Bardl, G. et.al. Comp. B., 2016, doi: 10.1016/j.compositesb.2016.04.040

•

- 6. K. Mizukami et al., Compos. Struct., 2019, doi: 10.1016/j.compstruct.2019.111227
- 7. Marsh, G., Automating aerospace composites production with fibre placement, Reinforced Plastics, 2011
- 8. C. Schmidt et al., Composites: Part B, 56 (2014) 109–116
- 9. H. Kosukegawa, et.al, Evaluation of detectability of differential type probe using directional eddy current for fibre waviness in CFRP, Philos. Trans. R. Soc. 2020
- 10. Yi, et.al., Modelling and evaluation of carbon fibre composite structures using high-frequency eddy current imaging, Comp. B., 2023
- 11. Mussatayev, M., et.al., Directional eddy current probe configuration for in-line detection of out-of-plane wrinkles, Comp. B., 2023
- 12. Mizukami, K. et al., Compos. Struct., 2021
- 13. Pasadas et al., Measurement. 2020

Thank you for listening

robert.hughes@bristol.ac.uk

Department of Mechanical Engineering, University of Bristol

