

Validation of a Numerical Model for Predictions of the Thermoelastic Effect in Laminated Composite Structures

<u>**Riccardo Cappello**</u>^a, Rafael Ruiz-Iglesias^a, Geir Olafsson^a, Giuseppe Pitarresi^b, Giuseppe Catalanotti^c and Janice Dulieu-Barton^a

^a Bristol Composites Institute (BCI), University of Bristol, UK

^b University of Palermo, Italy

^c Kore University of Enna, Italy

- Thermoelastic Stress Analysis and non adiabaticity in composite laminates
- Numerical Model
- Experimental setup and material properties
- Comparison between numerical and experimental results
- Analysis of the effects of surface resin layer and loading frequency on the thermoelastic response
- Coupon with non-uniform temperature distribution
- Conclusions

Thermoelastic effect (reversible)

Temperature variations

Deformations in elastic field

298.06

Thermoelastic temperature variation for orthotropic material

 $sin(\omega t)$

Each ply represents a different heat source depending on its orientation, generating through-thickness temperature gradients → non adiabatic behaviour.

ncia Numerical Model

Via a Python script, a parametric model has been developed in Abaqus:

- Geometry (H, W) of the specimen, number (N) and thickness (T) of plies, lay-up, material system are fully customisable.
- Inclusion of a surface resin-rich layer (RRL).
- Symmetric displacement with a sinusoidal waveform applied to upper and lower faces of the specimen.
- Conduction between plies.
- Coupled temperature-displacement analysis (C3D8T brick elements).

*For more details on the model: Cappello, Riccardo, Giuseppe Pitarresi, and Giuseppe Catalanotti. "Thermoelastic Stress Analysis for composite laminates: A numerical investigation." *Composites Science and Technology* (2023): 110103.

Engineering and Physical Sciences Research Council Experimental Setup

XETER

E

Load

Experiments

0.5 Hz 1.1 Hz 30.1 Hz

Time

Layups	[0, 0, 0, 45, -45, 0] _s , [0, 45, -45, 0, 0, 0] _s
Loading frequencies (Hz)	0.5, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1,7.1,8.1,9.1,10.1,
	12.1, 15.1, 17.1, 20.1, 22.1, 25.1, 27.1, 30.1
Ply thickness (mm)	0.125
Number of loading cycles	3
Resin layer thickness (μm)	(5, 12), (8, 25)
Experimental sampling frequency (Hz)	383.0
Numerical sampling	50 points per cycle

Property	IM7/8552		
Young's modulus E ₁ (GPa)	159.5*		
Young's modulus E ₂ (GPa)	10.1*		
Poisson's ratio v_{12}	0.325*		
Shear modulus G ₁₂ (GPa)	5.14*		
Fibre V _f (%)	58.0*		
Thermal expansion coeff. α_1 (10 ⁻⁶ K ⁻¹)	-0.127*		
Thermal expansion coeff. α_2 (10 ⁻⁶ K ⁻¹)	21.9*		
Thermal conductivity k_1 (W m K ⁻¹)	5		
Thermal conductivity k_2 (W m K ⁻¹)	0.6		
Density $ ho$ (Kg dm ⁻³)	1.57*		
Specific heat C _{ϵ} (J Kg ⁻¹ K ⁻¹)	857		

University of **Southampton**

UNIVERSITY OF

ETER

3

Numerical samplin

Experiments

	0.5 Hz		1.1 Hz			30.1 Hz		
- rodu								
	l		Time	Ŧ		•	r	

Property	IM7/8552
Young's modulus E ₁ (GPa)	159.5*
Young's modulus E_2 (GPa)	10.1*
Poisson's ratio v_{12}	0.325*
Shear modulus G ₁₂ (GPa)	5.14*
Fibre V _f (%)	58.0*
Thermal expansion coeff. α_1 (10 ⁻⁶ K ⁻¹)	-0.127*
Thermal expansion coeff. α_2 (10 ⁻⁶ K ⁻¹)	21.9*
Thermal conductivity k_1 (W m K ⁻¹)	5
Thermal conductivity k_2 (W m K ⁻¹)	0.6
Density $ ho$ (Kg dm ⁻³)	1.57*
_Specific heat C _ε (J Kg ⁻¹ K ⁻¹)	857

1110

25. Thermography-based Nondestructive Evaluation (NDE), Process Monitoring, Data Fusion(Hemlock/Oak)– **Monday 3rd (05:10 PM)** A Tool to Obtain the Coefficients of Thermal Expansion for CFRP Composites using Full-Field Data Fusion #17536 R. Ruiz-Iglesias

Specific field C_E (J Kg K

 $[0,45-45,0,0,0]_{s} - RRL = 8\mu m$

[0,0,0,45-45,0]_s− RRL = 5 μm

[0,45-45,0,0,0]_s- RRL =25 μm

[0,0,0,45-45,0]_s – RRL = 12 μm

Experimental Results: [0,0,0,45-45,0]_s

Experimental Results: [0,45-45,0,0,0]_S

Numerical results: [0, 0, 0, 45, -45, 0]_s, 7.1 Hz

ETER

C-Spar coupon: $[(45/-45)_3/(0/90)_3]_S$

Layup: [(45/-45)₃/(0/90)₃]_S

Measured RRL thickness $\approx 20 \ \mu m$

Unknown material properties

Thermoelastic response (Δ T)

C-Spar coupon: results

UNIVERSITY OF

TER

University of Southampton

- Thermoelastic response in CFRP laminates is highly dependent on testing parameters (i.e., loading frequency), material properties →non adiabatic phenomena in the thickness direction.
- Small variations in the thickness of the surface resin layer can strongly affect the measured thermoelastic response.
- The proposed numerical model allows the interpretation of the through-thethickness heat transfer phenomena and facilitates the use of TSA for full-field model validation on composites.
- The model is able to replicate non-uniform temperature distributions due to the presence of edge effects in complex layups.
- The model will be used to tune experimental setup and optimize testing parameters for the identification of subsurface damage using TSA.

