

A tool to obtain the coefficients of thermal expansion for CFRP composites using full-field data fusion

Rafael Ruiz Iglesias

R. Cappello, G. Ólafsson, O.T. Thomsen and J.M. Dulieu-Barton PhD Student

THERMOELASTIC STRESS ANALYSIS (TSA)

Stress variation ($\Delta \sigma$) is required to obtain the <u>thermoelastic response</u> of a material:

 $T_0 \sim$ Mean temperature $\rho \sim$ Density $C_p \sim$ Specific heat capacity α_1 and $\alpha_2 \sim$ Thermal expansion coefficients in 1,2 $\Delta \sigma_1$ and $\Delta \sigma_2 \sim$ Stress variation in 1,2 $[Q]_{1,2} \sim$ Stiffness matrix $[T] \sim$ Transformation matrix $[\Delta \varepsilon_{xy}] \sim$ Strain variation in x,y

1,2: Ply coordinate system x,y: Laminate coordinate system

 $\Delta \mathbf{T} = \frac{-T_0}{\rho C_n} (\alpha_1 \Delta \sigma_1 + \alpha_2 \Delta \sigma_2) = \frac{-T_0}{\rho C_n} \left([\alpha]_{1,2}^{\mathrm{T}} [\mathbf{Q}]_{1,2} [\mathbf{T}] [\Delta \varepsilon]_{\mathrm{xy}} \right)$

Simplified for orthotropic composite lamina (as $\alpha_6 = 0$)

Full Field Imaging of MD CFRP

[1] Jiménez-Fortunato I., Bull DJ., Thomsen OT., Dulieu-Barton JM. On the source of the thermoelastic response from orthotropic fibre reinforced composite laminates. Composites Part A: Applied Science and Manufacturing

Thermoelastic Response of the MD CFRP laminates

The **stress/strain** state throughout the surface **is homogeneous too**

 ΔT is different from 0 to 45-degree plies

HEAT TRANSFER

uency range

No constant

FULL FIELD DATA PROCESSING & FUSION

MOTIVATION OF THE RESEARCH

List of CFRP IM7/8552 mechanical and thermal properties from multiple references (will be shown at the end of the presentation)

Reference	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	% Variation
Young's modulus E ₁ (GPa)	148.8	171.4	161.0	164.0	161.0	158.5	161.0	165.0	22.26
Young's modulus E ₂ (GPa)	9.19	9.08	11.38	12.00	11.38	8.96	11.38	9.00	15.29
Poisson's ratio v ₁₂	0.34	0.32	0.32	0.30	0.32	0.32	0.32	0.34	0.04
Bending stiffness G ₁₂ (GPa)	5.06	5.30	5.17	5.00	5.20	4.69	5.17	5.60	1.14
Thermal expansion coeff. α_1 (10 ⁻⁶ K ⁻¹)	-0.3	-5.5	-0.1	-0.1	-0.9	-0.17	0	-1.0	298.12
Thermal expansion coeff. α_2 (10 ⁻⁶ K ⁻¹)	28.4	25.5	31	12.4	28.8	36.5	30	18	196.20

- Residual stress
- Undesired deformation

Residual stress induced cracks

Manufacturing induced deformation

Dimensional stability

MOTIVATION OF THE RESEARCH

List of CFRP IM7/8552 mechanical and thermal properties from multiple references (will be shown at the end of the presentation)

Reference	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	% Variation
Young's modulus E ₁ (GPa)	148.8	171.4	161.0	164.0	161.0	158.5	161.0	165.0	22.26
Young's modulus E ₂ (GPa)	9.19	9.08	11.38	12.00	11.38	8.96	11.38	9.00	15.29
Poisson's ratio v ₁₂	0.34	0.32	0.32	0.30	0.32	0.32	0.32	0.34	0.04
Bending stiffness G ₁₂ (GPa)	5.06	5.30	5.17	5.00	5.20	4.69	5.17	5.60	1.14
Thermal expansion coeff. α_1 (10 ⁻⁶ K ⁻¹)	-0.3	-5.5	-0.1	-0.1	-0.9	-0.17	0	-1.0	298.12
Thermal expansion coeff. α_2 (10 ⁻⁶ K ⁻¹)	28.4	25.5	31	12.4	28.8	36.5	30	18	196.20

- Residual stress
- Undesired deformation

MOTIVATION OF THE RESEARCH

List of CFRP IM7/8552 mechanical and thermal properties from multiple references (will be shown at the end of the presentation)

Reference	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	% Variation
Young's modulus E ₁ (GPa)	148.8	171.4	161.0	164.0	161.0	158.5	161.0	165.0	22.26
Young's modulus E ₂ (GPa)	9.19	9.08	11.38	12.00	11.38	8.96	11.38	9.00	15.29
Poisson's ratio v_{12}	0.34	0.32	0.32	0.30	0.32	0.32	0.32	0.34	0.04
Bending stiffness G ₁₂ (GPa)	5.06	5.30	5.17	5.00	5.20	4.69	5.17	5.60	1.14
Thermal expansion coeff. α_1 (10 ⁻⁶ K ⁻¹)	-0.3	-5.5	-0.1	-0.1	-0.9	-0.17	0	-1.0	298.12
Thermal expansion coeff. α_2 (10 ⁻⁶ K ⁻¹)	28.4	25.5	31	12.4	28.8	36.5	30	18	196.20

- Residual stress
- Undesired deformation

AIM & OBJECTIVES -> Device a quick and reliable tool for obtaining the CTEs from CFRP

- Use simple strip **multidirectional specimens** loaded in uniaxial cyclic tension at different loading frequencies.
- Use **Thermoelastic Stress Analysis (TSA) and Digital Image Correlation (DIC)** to obtain $\Delta T/T_o$ and the strains
- Use an **optimization procedure** based on a **comparison of an analytical model of heat transfer** with the experimental data to **identify the CTEs**

α_1 and α_2 must be known values!

$\Delta T/T_0$ from Wong's model using values in [1-8]

Wong's model is used inputting IM7/8552 properties mentioned in Table 1.

Trend in the response Let's put the experimental results here which is correct?

CTE IDENTIFICATION METHODOLOGY

IM7/8552 MATERIAL PROPERTIES OBTENTION

300

Constituents' properties of the fibre and the resin

IM7 Fibre Reference	[11]	[1	2]	[13]	[14]	[15]	[16]	[17]	[18]	CV (%)
Young's modulus E _{1f} (GPa)	276	>	(х	276	Х	276	276	263.7	2.01
Young's modulus E _{2f} (GPa)	Х	>	(х	56	Х	19.5	15	19	70.10
Poisson's ratio v _f	0.22	>	(х	0.32	х	0.28	0.2	0.2	21.99
Bending stiffness G _f (GPa)	Х	>	(х	28	Х	70	15	27.6	68.29
Density ρ _f (kg m ⁻³)	1780	>	(х	Х	х	1780	1780	х	0.00
Specific heat capacity $Cp_f(J kg^{-1} K^{-1})$	879.2	>	(х	Х	Х	879	х	Х	0.02
Thermal expansion coeff. α_{1f} (10^{-6} K^{-1})	-0.64	-0	.4	-0.9	-2.29	-1	-0.54	Х	-0.4	75.21
Thermal expansion coeff. α_{2f} (10 ⁻⁶ K ⁻¹)	Х	4.4 ^	⁻ 6.6	7.2	9.2	10	10.08	Х	5.63	30.86
8552 Resin Reference	[1]	[4]	[7]	[8]	[19]	[20	D] CV	/ (%)		
Young's modulus E _{1r} (GPa)	3.8	5	4.67	4.08	х	х	12	2.45		
Poisson's ratio v _r	0.35	0.40	0.33	0.38	х	Х	8	.52		
Bending stiffness G _r (GPa)	1.41	х	х	1.48	Х	х	3	.43		

1301

1350

48.0

E_{1 Mean}

E_{1 STD}

Х

Х

46.7

Х

65

Tension tests were first performed on x3 CFRP [0]₁₈ and [90]₁₈

1300

1025

Х

6.81

14.69

14.31

&

E_{2 Mean}

E_{2 STD}

[0] ₁₈ CFRP	[90] ₁₈ CFRP
------------------------	-------------------------

Experimental results

1153

1100

53.5

Х

Х

60

Density ρ_r (kg m⁻³)

Specific heat capacity Cp_r (J kg⁻¹ K⁻¹)

Thermal expansion coeff. α_r (10⁻⁶ K⁻¹)

IM7/8552 MATERIAL PROPERTIES OBTENTION

Constituents' properties of the fibre and the resin

IM7 Fibre Reference	[11]	[1	2]	[13]	[14]	[15]	[16]	[17]	[18]	CV (%)
Young's modulus E _{1f} (GPa)	276	>	(х	276	Х	276	276	263.7	2.01
Young's modulus E _{2f} (GPa)	Х	>	(х	56	х	19.5	15	19	70.10
Poisson's ratio v _f	0.22	>	(х	0.32	х	0.28	0.2	0.2	21.99
Bending stiffness G _f (GPa)	Х	>	(х	28	х	70	15	27.6	68.29
Density ρ _f (kg m ⁻³)	1780	>	(х	Х	х	1780	1780	х	0.00
Specific heat capacity $Cp_f(J kg^{-1} K^{-1})$	879.2	>	(х	Х	х	879	х	х	0.02
Thermal expansion coeff. α_{1f} (10 ⁻⁶ K ⁻¹)	-0.64	-0	.4	-0.9	-2.29	-1	-0.54	х	-0.4	75.21
Thermal expansion coeff. α_{2f} (10 ⁻⁶ K ⁻¹)	Х	4.4 ^	⁻ 6.6	7.2	9.2	10	10.08	х	5.63	30.86
8552 Resin Reference	[1]	[4]	[7]	[8]	[19]	[2	0] C	V (%)		
Young's modulus E _{1r} (GPa)	3.8	5	4.67	4.08	Х	Х	(1	.2.45		
Poisson's ratio v _r	0.35	0.40	0.33	0.38	Х	Х	(8.52		
Bending stiffness G _r (GPa)	1.41	х	х	1.48	х	Х	(3.43		
Density ρ _r (kg m ⁻³)	1153	х	х	х	1301	13	00	6.81		
Specific heat capacity Cp_r (J kg ⁻¹ K ⁻¹)	1100	х	х	Х	1350	10	25 2	4.69		
Thermal expansion coeff. α_r (10 ⁻⁶ K ⁻¹)	53.5	60	65	46.7	48.0	х	(4.31		

Tension tests were first performed on x3 CFRP [0]₁₈ and [90]₁₈

E_{1 Mean}

E_{1 STD}

E_{2 Mean}

E_{2 STD}

&

Experimental results

RELIABLE BOUNDS FOR THE CTE OBTENTION

- α_1 swaps in sign around 0.5 IM7 Volume fraction
- Hashin and the **MSM** models give the best fit for α_2 [21]

Constituents' properties of the fibre and the resin

IM7 Fibre Reference	[11]	[1]	2]	[13]	[14]	[15]	[16]	[17]	[18]	CV (%)
Thermal expansion coeff. α_{1f} (10 ⁻⁶ K ⁻¹)	-0.64	-0	.4	-0.9	-2.29	-1	-0.54	х	-0.4	75.21
Thermal expansion coeff. α_{2f} (10 ⁻⁶ K ⁻¹)	х	4.4 ^	² 6.6	7.2	9.2	10	10.08	Х	5.63	30.86
8552 Resin Reference	[1]	[4]	[7]	[8]	[19]	[20	0] CV	' (%)		
Thermal expansion coeff. α_r (10 ⁻⁶ K ⁻¹)	53.5	60	65	46.7	48.0	х	14	1.31		

Range of possible CTEs from micromechanical models.

Thermal expansion coeff. α_1 (10 ⁻⁶ K ⁻¹) -1.610 0.974	
Thermal expansion coeff. α_2 (10 ⁻⁶ K ⁻¹) 22.131 35.864	

Physical plausible limits for CTEs

TSA Results from the UD specimens

CFRP OPTIMISED CTEs and TSA response

FFDF for detecting resin pockets in MD laminates

FFDF for detecting resin pockets in MD laminates

FFDF for detecting resin pockets in MD laminates

The thickness of the **RRL is not constant** through the entire imaged surface **and hence influences the response locally**. Full field $\Delta T/T_0$ maps generated at 15.1Hz clearly show heterogeneities α_1 is highly sensitive to variations positive or negative values when doing the full field analysis. in fibre/matrix volume fractions CFRP [0,45,-45,0,0,0] CFRP [0,0,0,45,-45,0]_s α_1 (K⁻¹) \in [-0.3·10⁻⁶, 0.09·10⁻⁶] $\times 10^{-4}$ $\times 10^{-4}$ 1.2 1.8 1.6 (K^{-1}) (K⁻¹ -5 10 1.4 Coefficient of Thermal Expansion α Coefficient of Thermal Expansion α -10 0.8 1.2 $\Delta T/T_0$ (K/K) (K/K)-15 🕣 Phase (0) Phase 0.6 0 0.8 -10 0.4 0.6 -5 15 -25 0.4 0.2 -10 -20 -30 -20 0.2

 $\times 10^{-8}$

CONCLUSIONS

Feasible physical limits were first established for the laminae properties

• $\alpha_1 (K^{-1}) \in [-0.161 \cdot 10^{-6}, 0]$ and $\alpha_2 (K^{-1}) \in [22.131 \cdot 10^{-6}, 35.864 \cdot 10^{-6}].$

Possibility of calculating α_1 and α_2 accurately using an optimization algorithm as the $\Delta T/T_0$ is very sensible to the CTEs

1. The multidirectional laminates $\alpha_1 \approx -0.103 \cdot 10^{-6} \text{ K}^{-1}$ and $\alpha_2 \approx 23.139 \cdot 10^{-6} \text{ K}^{-1}$

Resin pockets in the surface **have been identified** combining the TSA Phase and variations in α_1

FUTURE WORK

- **<u>Confirm results</u>** found with another experimental technique (e.g. resin concentration with X-Ray CT Scanning)
- <u>Real structure?</u>: **C-Spar** (If there is enough time)
- Different stress states (e.g. bending)

REFERENCES

1. Jiménez-Fortunato I., Bull DJ., Thomsen OT., Dulieu-Barton JM. On the source of the thermoelastic response from orthotropic fibre reinforced composite laminates. Composites Part A: Applied Science and Manufacturing. Elsevier Ltd; 1 October 2021; 149(106515): 1–15.

2. Camanho PP., Maimí P., Dávila CG. Prediction of size effects in notched laminates using continuum damage mechanics. Composites Science and Technology. October 2007; 67(13): 2715–2727. Available at: DOI:10.1016/j.compscitech.2007.02.005

3. Stacey JP., O'Donnell MP., Schenk M. Thermal Prestress in Composite Compliant Shell Mechanisms. Volume 5A: 42nd Mechanisms and Robotics Conference. American Society of Mechanical Engineers; 2018. Available at: DOI:10.1115/DETC2018-85826

4. Daynes S., Potter KD., Weaver PM. Bistable prestressed buckled laminates. Composites Science and Technology. December 2008; 68(15–16): 3431–3437. Available at: DOI:10.1016/j.compscitech.2008.09.036

5. Krueger R. Finite Element Analysis of Composite Joint Configurations with Gaps and Overlaps. 2014. Available at: https://api.semanticscholar.org/CorpusID:134394354

6. Catinaccio A., Esala J. HTS Magnet CFRP Casing Conceptual Study. 2021.

7. Zhang B., Kawashita LF., Jones MI., Lander JK., Hallett SR. An experimental and numerical investigation into damage mechanisms in tapered laminates under tensile loading. Composites Part A: Applied Science and Manufacturing. June 2020; 133: 105862. Available at: DOI:10.1016/j.compositesa.2020.105862

8. Kaddour A., Hinton M., Smith P., Li S. Mechanical properties and details of composite laminates for the test cases used in the third world-wide failure exercise. Journal of Composite Materials. 19 September 2013; 47(20–21): 2427–2442. Available at: DOI:10.1177/0021998313499477

9. Donald W. Radford, 3.13 Application of High Temperature Polymer Matrix Composites to Engine Intake Valves, Comprehensive Composite Materials II, Elsevier, 2018, Pages 312-349, ISBN 9780081005347, https://doi.org/10.1016/B978-0-12-803581-8.10339-X.

10. Wong A. A non-adiabatic thermoelastic theory for composite laminates. Journal of Physics and Chemistry of Solids. 31 December 1991; 52: 483–494. Available at: DOI:10.1016/0022-3697(91)90180-8

11. Hooke R., Jeeves TA. 'Direct Search''' Solution of Numerical and Statistical Problems'. J. ACM. New York, NY, USA: Association for Computing Machinery; April 1961; 8(2): 212–229. Available at: DOI:10.1145/321062.321069

REFERENCES

12. Kourehli S., Amiri GG., Ghafory-Ashtiany M., Bagheri A. Structural damage detection based on incomplete modal data using pattern search algorithm. Journal of Vibration and Control. 24 April 2013; 19(6): 821–833. Available at: DOI:10.1177/1077546312438428

13. Swann WH. Direct search methods. Numerical methods for unconstrained optimization. Academic Press New York; 1972; : 13–28.

14. Al-Sumait JS., Al-Othman AK., Sykulski JK. Application of pattern search method to power system valve-point economic load dispatch. International Journal of Electrical Power & Energy Systems. Elsevier; 2007; 29(10): 720–730.

15. Biondi T., Ciccazzo A., Cutello V., D'Antona S., Nicosia G., Spinella S. Multi-Objective Evolutionary Algorithms and Pattern Search Methods for Circuit Design Problems. J. Univers. Comput. Sci. 2006; 12(4): 432–449.

16. Lewis RM., Torczon V., Trosset MW. Direct search methods: then and now. Journal of computational and Applied Mathematics. Elsevier; 2000; 124(1–2): 191–207.

17. Kim W-T., Choi M-Y., Park J-H. Analysis of thermal stress in fatigue fracture specimen using lock-in thermography. Proceedings of the 2006 International Conference on Quantitative InfraRed Thermography. QIRT Council; 2006. Available at: DOI:10.21611/qirt.2006.099

18. Fruehmann RK., Crump DA., Dulieu-Barton JM. Characterization of an infrared detector for high frame rate thermography. Measurement Science and Technology. 1 October 2013; 24(10): 105403. Available at: DOI:10.1088/0957-0233/24/10/105403

19. Daynes S., Potter KD., Weaver PM. Bistable prestressed buckled laminates. Composites Science and Technology. December 2008; 68(15–16): 3431–3437. Available at: DOI:10.1016/j.compscitech.2008.09.036

20. Ruiz-Iglesias R., Ólafsson G., Thomsen OT., Dulieu-Barton JM. Identification of Subsurface Damage in Multidirectional Composite Laminates Using Full-Field Imaging. SEM 2022: Thermomechanics & Infrared Imaging, Inverse Problem Methodologies and Mechanics of Additive & Advanced Manufactured Materials, Volume 6. 2022. pp. 39–42. Available at: DOI:10.1007/978-3-031-17475-9_6

21. Dong C. Development of a Model for Predicting the Transverse Coefficients of Thermal Expansion of Unidirectional Carbon Fibre Reinforced Composites. Applied Composite Materials. 25 May 2008; 15(3): 171– 182. Available at: DOI:10.1007/s10443-008-9065-3

EXPERIMENTAL SETUP / Pictures

TSA and DIC Data Processing

TSA parameters.					
Technique used	Thermal Image Acquisition				
Infrared fast camera	Telops Fast M3K				
Lens	50 mm				
Camera resolution	≈ 20 mK				
Pixel to mm conversion	1 px = 0.31 mm				
Frames	5250				
Frame Rate	383 Hz				

DIC parameters and evaluation for testing the unnotched specimens.						
Technique used	3D / Stereo Digital	Image Correlation				
	Camera 1 (Blackfly-12.3 MPx)	Camera 2 (Blackfly-12.3 MPx)				
Sensor, digitalization	Sony IMX226 (CMOS) , 4096 x 3000					
Stereo angle	19.53°					
Frame rate	10 Hz					
Camera noise (% of range)	0.454%	0.443%				
Lens and imaging distance	25 mm	25 mm				
Total number of images	316	316				
DIC software package	MatchID					
Pixel to mm conversion	1 px = 0.0876mm					
ROI (mm)	112.8 x 24.49					
Coordinate transformation	Best-plane-Fit					
Subset, step	13,	, 10				
Interpolation, shape function, correlation	Bicubic, Qua	dratic, ZNSSD				
Pre-smoothing	Gaussian	Smoothing				
Displacement resolution	2.176 ·	10 ⁻³ mm				
Strain conversion	Log. Eule	r–Almansi				
Smoothing technique	Local polynomial - at	ffine least-squares fit				
Strain window (pixels)	15 data	a points				
VSG	153	oixels				
Strain resolution	0.00	790%				

HOW IS HEAT TRANSFER OCURRING?

TSA is based on the thermoelastic effect, which describes the coupling between mechanical deformation and thermal energy in an elastic solid and was established by Lord Kelvin (W. Thomson) [4] in 1855

Change in T is proportional to the change of the sum in the principal stresses under adiabatic conditions, and is loaded within the elastic region of the material

$$\dot{T} = \frac{T_0}{\rho C_{\varepsilon}} \frac{\partial \sigma_{ij}}{\partial T} \dot{\varepsilon}_{ij} - \frac{\dot{Q}}{\rho C_{\varepsilon}} \text{ for } i, j = 1, 2, 3$$
$$\dot{Q} = k \nabla^2 T$$

If \dot{Q} (rate of internal heat generation) = 0 \rightarrow Adiabatic

To minimise the effect of \dot{Q} (internal heat generation) an **increase in the**

loading frequency is required \longrightarrow Increase in $\dot{\varepsilon}_{ij}$

 \longrightarrow The \dot{Q} term can be neglected

The thermal diffusion length decrease, and "pseudo" adiabatic conditions are achieved

IM7/8552 COUPONS MANUFACTURING

- Manufactured in an autoclave following the manufacturer recommended curing cycles.
- All panels were made either with peel ply or caul plate: for the peel ply each side of the panels has either a 'smooth' surface, which was in contact with the aluminum mold, or a rough surface containing the characteristic peel ply imprint.

THERMAL CAMERAS / Comparison

Model	Telops FAST IR MK2	FLIR AC655	FLIR Lepton 3.5
Туре	Photon Detector	Micro-bolometer	PCB mounted micro- bolometer
Sensor size	256 x 320 pixels	480 x 640 pixels	120 x 160 pixels
Sensitivity	25 mk	50 mK	50 mK
Size	321 × 199 × 176 mm	216 × 73 × 75 mm	10 × 12 × 7 mm
Cost	~ 100k GBP	~10k GBP	~300 GBP

THERMAL CAMERAS / Comparison

Photondetectors datasheet [1]

	-					
Characteristics	Photon Detector					
IR Camera	FLIR SC5500	Telops FAST M2k				
Detector material	InSb					
Spectral range	2.5 - 5.1 μm	1.5 - 5.4 μm				
Pixel dimension	30 µm	25 μm				
Cost	~£100,000					
Maximum frame rate at full	383 Hz	1910 Hz				
window	565 112	1910112				
Frame rate selection	Any value up to 383 Hz	Any value up to 1910 Hz				
Reading array	All pixel detectors at the same time					
Integration time	10 - 20,000 μs	0.27 µs to 513 µs				
Response time	10 - 20,000 μs	0.27 µs to 513 µs				
Sensitivity (NETD)	<20 mK	<25 mK				
Resolution	320 x 25	6 pixels				
Cooling	Y	es				
Analogue input	Y	es				
Weight	3.8 kg	< 6 kg				
Size	310 x 141 x 159 mm	321 x 199 x 176 mm				

Microbolometers datasheet [1]

Characteristics	Standard microbolometer	Thermal core microbolometer	
IR Camera	FLIR A655sc FLIR Lepton 3.5 radio		
Detector material	VOx VOx		
Spectral range	7.5 - 14 μm	8 - 14 μm	
Pixel dimension	17 μm	12 µm	
Cost	~£10,000	~£500	
Maximum frame rate at full window	50 Hz	Limited at 8.7751 Hz	
Frame rate selection	50 Hz, 25 Hz, 12.5 Hz, 6.25 Hz, 3.13 Hz	8.7751 Hz	
Reading array	Each row of pixels at a time		
Thermal time constant	8 ms - fixed	12 ms	
Response time	24 ms (3 x thermal time constant)	36 ms (3 x thermal time constant)	
Sensitivity (NETD)	< 30 mK	< 50 mK	
Resolution	640 x 480 pixels	160 x 120 pixels	
Cooling	No		
Analogue input	No		
Weight	0.9 kg	0.9 g	
Size	216 x 73 x 75 mm	10.50 x 12.70 x 7.14 mm	

FLIR Lepton 3.5 radiometric

[1] Irene Jiménez-Fortunato. Development and integration of full-field imaging techniques for assessment of composite structures. 2021.

Micromechanical Models considerations

Schapery model

 $\alpha_{22} = (\alpha_{fT} + \alpha_{fL}v_f)V_f + \alpha_m(1 + v_m)(1 - V_f) - \alpha_{11}[v_fV_f + v_m(1 - V_f)]$ Modified strip model

 $\alpha_{22} = \frac{(\alpha_{fT} + \alpha_{fL}v_f)V_f + \alpha_{fT}v_{fTT}\sqrt{V_f} + \alpha_m [1 - V_f + v_m (2 - V_f - \sqrt{V_f})] - \alpha_{11} [v_f V_f + v_m (1 - V_f)]}{1 + v_{fTT}\sqrt{V_f} + v_m (1 - \sqrt{V_f})}$ Chamis model $\alpha_{22} = \alpha_{fT}\sqrt{V_f} + \alpha_m (1 - \sqrt{V_f}) \left(1 + V_f v_m \frac{E_{fT}}{E_{11}}\right)$ Hashin's concentric cylinder model

$$\begin{aligned} \alpha_{22} &= \widehat{\alpha}_{22} + \left(\overline{S}_{12} - \widehat{S}_{12}\right) \left[\left(\alpha_{fL} - \alpha_m\right) P_{11} + 2\left(\alpha_{fT} - \alpha_m\right) P_{12} \right] \\ &+ \left(\overline{S}_{22} - \widehat{S}_{22}\right) \left[\left(\alpha_{fL} - \alpha_m\right) P_{12} + \left(\alpha_{fT} - \alpha_m\right) (P_{22} + P_{23}) \right] \\ &+ \left(\overline{S}_{23} - \widehat{S}_{23}\right) \left[\left(\alpha_{fL} - \alpha_m\right) P_{12} + \left(\alpha_{fT} - \alpha_m\right) (P_{22} + P_{23}) \right] \end{aligned}$$

where S is the compliance matrix. Terms with an overbar and hat refer to effective and average composite properties.

$$P_{11} = (A_{22}^2 - A_{23}^2)/\det \mathbf{A}$$

$$P_{12} = (A_{12}A_{23} - A_{22}A_{12})/\det \mathbf{A}$$

$$P_{22} = (A_{11}A_{22} - A_{12}^2)/\det \mathbf{A}$$

$$P_{23} = (A_{12}^2 - A_{11}A_{23})/\det \mathbf{A}$$

$$\mathbf{A} = \mathbf{S}^{(\mathbf{f})} - \mathbf{S}^{(\mathbf{m})}$$

$$\det \mathbf{A} = A_{11}(A_{22}^2 - A_{23}^2) + 2A_{12}(A_{12}A_{23} - A_{22}A_{12})$$

based on the simple planar model of alternating fibre and matrix strips.

developed based on Schapery model by introducing the constraint effects from thermal expansion and Poisson's ratio mismatch of fibre and matrix.

developed based on a simple force-balance.

developed from a cylinder assemblage model.

ALL IM7/8552 Properties

Layups	[0, 0, 0, 45, -45, 0] _s , [0, 45, -45, 0, 0, 0] _s 0.5, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1,7.1,8.1,9.1,10.1,12.1, 15.1, 17.1, 20.1, 22.1, 25.1, 27.1, 30.1 0.125			
Loading frequencies (Hz)				
Ply thickness (mm)				
Resin layer thickness (µm)	5, 8			
Experimental sampling frequency (Hz)		383.0		
Property	IM7/8552	Property	Epoxy resir	
Young's modulus E ₁ (GPa)	159.5*	Young's modulus E (GPa)	3.8	
Young's modulus E_2 (GPa)	10.1*	Poisson's ratio v	0.35	
Poisson's ratio v ₁₂	0.325*	Shear modulus G ₁₂ (GPa)	2.71	
Shear modulus G ₁₂ (GPa)	5.14*	Thermal expansion coeff. αr (10 ⁻⁶ K ⁻¹)	53.5	
Thermal expansion coeff. α_1 (10 ⁻⁶ K ⁻		Thermal conductivity k (W m K ⁻¹)	0.2	
¹)	-0.102*	Density $ ho$ (Kg dm ⁻³)	1.153	
Thermal expansion coeff. α_2 (10 ⁻⁶ K ⁻		Specific heat C _ɛ (J Kg ⁻¹ K ⁻¹)	1110	
1)	23.138*			
Thermal conductivity k ₁ (W m K ⁻¹)	5			
Thermal conductivity k ₂ (W m K ⁻¹)	0.82			
Density $ ho$ (Kg dm ⁻³)	1.5692*			
Specific heat C _c (J Kg ⁻¹ K ⁻¹)	884.53			

Measuring the K_{t.thickness} (The Flash Method)

Main literature reference: 0.84 W/m*K [5]

[5] M.T. Saad, S.G. Miller, T. Marunda, Thermal characterization of IM7/8552-1 carbon-epoxy composites, ASME 2014 Int. Mech. Eng. Congr. Expos. (2014) 1–8.

Fable 1. Thermal Prop	erties of IM7/8552-1	Composite
-----------------------	----------------------	-----------

Temperature	Thermal	Specific	Thermal
(°C)	Diffusivity	Heat	Conductivity
	(cm ² /s)	(J/g*K)	(W/m*K)
25	0.0068	0.85741	0.84126
50	0.0067	0.91981	0.88184
75	0.0065	0.98683	0.92572
100	0.0064	1.05835	0.97286
125	0.0063	1.13099	1.02034
150	0.0062	1.20378	1.06764
175	0.0061	1.28975	1.12186

The flash method

- The power source can be a laser or a flash lamp.
- The energy will then be absorbed by the specimen and emitted again on the top of the sample.
- This radiation results in a temperature rise on the surface of the sample.
- This temperature rise is recorded from an infrared (IR) detector.

The Flash Method

Lock-in filtering approach

S

F

75%

34

The resin influence on Strip specimens TSA Results

The trend of $\Delta T/T_o$ is different for the two configurations with loading frequency.

Both layups "converge" to a similar level at high frequencies.

The **RRL** has an influence on ΔT and **changes the response** in this frequency domain (0.5 – 30.1 Hz).

Wong's model considerations

 $T_0 \sim$ Mean temperature $\rho \sim$ Density $C_p \sim$ Specific heat capacity α_1 and $\alpha_2 \sim$ Thermal expansion coefficients in 1,2 $\Delta \sigma_1$ and $\Delta \sigma_2 \sim$ Stress variation in 1,2 $[Q]_{1,2} \sim$ Stiffness matrix $[T] \sim$ Transformation matrix $[\Delta \varepsilon_{xy}] \sim$ Strain variation in x,y

x,y: Laminate coordinate system

$$\Delta \mathbf{T} = \frac{-T_0}{\rho C_p} (\alpha_1 \Delta \sigma_1 + \alpha_2 \Delta \sigma_2) = \frac{-T_0}{\rho C_p} \left([\alpha]_{1,2}^T [Q]_{1,2} [\mathbf{T}] [\Delta \varepsilon]_{xy} \right)$$

Simplified for orthotropic composite lamina (as $\alpha_6 = 0$)

There are **models** that aim to replicate the thermoelastic behaviour of composites

A.K. Wong [10]: A non-adiabatic thermoelastic theory for composite laminates (<u>numerical model</u>):

- 1-D model
- Conduction process is described by numerically solving the 1-D diffusion equation

Assuming that heat transfer during thermoelastic cycling is dominated by diffusion in the through-thickness direction

- Considers layers orientation, loading frequency, the resin surface layer thickness and the cyclic stress regime
- This model was validated for CFRP [0,45,-45] at a frequency range of 5-30 Hz