

Hybrid Approach for Understanding the Thermoelastic Response of CFRP Multidirectional Laminates

Rafael Ruiz Iglesias

R. Cappello, G. Ólafsson, O.T. Thomsen and J.M. Dulieu-Barton PhD Student

THERMOELASTIC STRESS ANALYSIS (TSA)

Stress variation ($\Delta \sigma$) is required to obtain the <u>thermoelastic response</u> of a material:

 $T_0 \sim$ Mean temperature $\rho \sim$ Density $C_p \sim$ Specific heat capacity α_1 and $\alpha_2 \sim$ Thermal expansion coefficients in 1,2 $\Delta \sigma_1$ and $\Delta \sigma_2 \sim$ Stress variation in 1,2 $[Q]_{1,2} \sim$ Stiffness matrix $[T] \sim$ Transformation matrix $[\Delta \varepsilon_{xy}] \sim$ Strain variation in x,y

Why composites? Used for structural applications: Damage and features can be located in the surface and subsurface

MOTIVATION OF THE RESEARCH

INTEREST Understand the thermomechanical response of multidirectional (MD) CFRP under **3D stress states**

- <u>Verify</u> the thermoelastic results using thermomechanical <u>modelling approaches</u> \rightarrow <u>Tune loading frequency</u>
- <u>Quantitative analysis</u> using both experimental and modelling <u>data fusion to understand the condition of the material</u>

Why is it important? <u>NEW & RELIABLE TOOL</u> for quantitative applications of TSA to laminates with complex stress states

[1] Jiménez-Fortunato I., Bull DJ., Thomsen OT., Dulieu-Barton JM. On the source of the thermoelastic response from orthotropic fibre reinforced composite laminates. Composites Part A: Applied Science and Manufacturing

Manufacturing was done in the autoclave following the manufacturers cycle

Multidirectional laminates

- CFRP [0,45,-45,0,0,0]_S
- CFRP [0,0,0,45,-45,0]_S

The resin plays a **<u>fundamental role in TSA</u>** and its effect must be addressed [2]

[2] Zhang D., Enke NF., Sandor BI. Thermographic stress analysis of composite materials. Experimental Mechanics.

Manufacturing was done in the autoclave following the manufacturers cycle

٠

•

Manufacturing was done in the autoclave following the manufacturers cycle

٠

OH [0,45,-45,0,0,0]_S TSA Results

The thick RRL change in the thermoelastic response is more visible at 15.1 Hz

Different response pattern at different frequencies \rightarrow "X shape"

The observed pattern is a combination of the stress state from all the different plies under different heat transfer conditions

OH [0,0,0,45,-45,0]_s TSA Results

<u>Fibre removed</u> when drilling the hole!

Some damage can be induced in real structures // Wrinkles are also found in the sample with the thin RRL (More visible at higher frequencies)

These unexpected features change the response pattern!

DIC Results - STRAIN ANALYSIS

Thin Resin [0,0,0,45,-45,0]_s

- Strain results are consistent at 15.1 Hz
- <u>Fibre bundle removed</u> when drilling the hole of $[0,0,0,45,-45,0]_{s} \rightarrow$ Stress / Strain redistribution .
- The next step is to compare the experimental with an FEA simulation done in ABAQUS ٠
- Excellent strain agreement ٠

Although some differences can be observed \longrightarrow DIC uncertainties (e.g. spatial filtering)

DIC Results - STRAIN ANALYSIS

- Strain results are consistent at 15.1 Hz
- <u>Fibre bundle removed</u> when drilling the hole of $[0,0,0,45,-45,0]_{s} \rightarrow$ Stress / Strain redistribution .
- The next step is to compare the experimental with an FEA simulation done in ABAQUS ٠
- Excellent strain agreement ۲

HYBRID APROACH FULL FIELD DATA INTEGRATION

HYBRID APROACH FULL FIELD DATA INTEGRATION

HYBRID APROACH FULL FIELD DATA INTEGRATION

THERMOMECHANICAL MODELS

This model allows the user to **obtain ΔT at any desired loading frequency**

ISOLATED PLIES $\Delta T/T_0$ - Thermomechanical Models

Defects (e.g. fibre pullout) change the thermoelastic "shape" which the FEA model doesn't account for

Through thickness TSA analysis (FEA Model)

Laminate stack

CONCLUSIONS — Reliability in the measurement

- A FAST, IN SITU, NEW APPROACH has been demonstrated based on integrating TSA + DIC results + TSA Modelling
- The model was validated under 3D stress states.
- **DIC data analysis and filtering influence** the full field strain derived ΔT models.
- Manufacturing/machining defects modify the thermoelastic response due to stress redistribution → Can be located!
- A through thickness analysis of the ΔT can be performed using the thermomechanical FEA model \rightarrow Tune loading freq.

FURTHER WORK

Influence of material properties in the analysis

18. Thermography-based Nondestructive Evaluation (NDE), Process Monitoring, Data Fusion– Monday 3rd (5:10 PM–5:30 PM) A tool to obtain the coefficients of thermal expansion for CFRP composites using full-field data fusion #17536

- **Different and realistic loading scenarios** where the strain is not uniform through the thickness of the laminate
- Effect of the matt black paint on TSA results.

EXPERIMENTAL SETUP / Pictures

OTHER TESTS / C-Spar

IM7/8552 Properties and Data Processing

IM7/8552 mechanical and thermal properties.

Property	Value
Young's modulus E_1 (GPa)	159.533
Young's modulus <i>E</i> ₂ (GPa)	10.121
Poisson's ratio v_{12}	0.325
Shear modulus G ₁₂ (GPa)	5.138
Thermal expansion coeff. α_1 (10 ⁻⁶ K-1)	-0.102
Thermal expansion coeff. α_2 (10 ⁻⁶ K-1)	23.138
Density ρ (kg/m³)	1569.2
Specific heat capacity <i>Cp</i> (J kg ⁻¹ K ⁻¹)	884.53

Monday 5:10 PM Hemlock/Oak

TSA parameters.		
Technique used Thermal Image Acquisition		
Infrared fast camera Telops Fast M3K		
Lens 50 mm		
Camera resolution ≈ 20 mK		
Pixel to mm conversion 1 px = 0.31 mm		
Frames	5250	
Frame Rate 383 Hz		

DIC parameters and evaluation for testing the unnotched specimens.			
Technique used	3D / Stereo Digital Image Correlation		
	Camera 1 (Blackfly-12.3 MPx)	Camera 2 (Blackfly-12.3 MPx)	
Sensor, digitalization	Sony IMX226 (CMOS) , 4096 x 3000		
Stereo angle	19.	53°	
Frame rate	10	Hz	
Camera noise (% of range)	0.454% 0.443%		
Lens and imaging distance	25 mm	25 mm	
Total number of images	316	316	
DIC software package	MatchID		
Pixel to mm conversion	1 px = 0.0876mm		
ROI (mm)	112.8 x 24.49		
Coordinate transformation	Best-p	lane-Fit	
Subset, step	13	, 10	
Interpolation, shape function, correlation	Bicubic, Quadratic, ZNSSD		
Pre-smoothing	Gaussian	Smoothing	
Displacement resolution	2.176 · 10 ⁻³ mm		
Strain conversion	Log. Euler–Almansi		
Smoothing technique	Local polynomial - affine least-squares fit		
Strain window (pixels)	15 data points		
VSG	153 pixels		
Strain resolution	0.00790%		

HOW IS HEAT TRANSFER OCURRING?

TSA is based on the thermoelastic effect, which describes the coupling between mechanical deformation and thermal energy in an elastic solid and was established by Lord Kelvin (W. Thomson) [4] in 1855

Change in T is proportional to the change of the sum in the principal stresses under adiabatic conditions, and is loaded within the elastic region of the material

$$\dot{T} = \frac{T_0}{\rho C_{\varepsilon}} \frac{\partial \sigma_{ij}}{\partial T} \dot{\varepsilon}_{ij} - \frac{\dot{Q}}{\rho C_{\varepsilon}} \text{ for } i, j = 1, 2, 3$$
$$\dot{Q} = k \nabla^2 T$$

If \dot{Q} (rate of internal heat generation) = 0 \longrightarrow Adiabatic

To minimise the effect of \dot{Q} (internal heat generation) an **increase in the**

loading frequency is required \longrightarrow Increase in $\dot{\varepsilon}_{ij}$

 \longrightarrow The \dot{Q} term can be neglected

The thermal diffusion length decrease, and "pseudo" adiabatic conditions are achieved

IM7/8552 COUPONS MANUFACTURING

- Manufactured in an autoclave following the manufacturer recommended curing cycles.
- All panels were made either with peel ply or caul plate: for the peel ply each side of the panels has either a 'smooth' surface, which was in contact with the aluminum mold, or a rough surface containing the characteristic peel ply imprint.

ALL IM7/8552 Properties

Specific heat C_E (J Kg⁻¹ K⁻¹)

Layups	[0, 0, 0, 45, -45, 0] _s , [0, 45, -45, 0, 0, 0] _s		
Loading frequencies (Hz)	0.5, 1.1, 2.1, 3.1, 4.1, 5.1, 6.1,7.1,8.1,9.1,10.1,12.1, 15.1, 17.1, 20.1, 22.1, 25.1, 27.1, 30.1		
Ply thickness (mm)	0.125		
Number of loading cycles	3		
Resin layer thickness (μm)	(5, 12), (8, 25)		
Experimental sampling frequency (Hz)	383.0		
Numerical sampling	50 points per cycle		

Property	IM7/8552	Property	Epoxy resin
Young's modulus E ₁ (GPa)	159.5*	Young's modulus E (GPa)	3.8
Young's modulus E ₂ (GPa)	10.1*	Poisson's ratio v	0.35
Poisson's ratio v_{12}	0.325*	Shear modulus G ₁₂ (GPa)	2.71
Shear modulus G ₁₂ (GPa)	5.14*	Thermal expansion coeff. αr (10 ⁻⁶ K ⁻¹)	53.5
Thermal expansion coeff. α_1 (10 ⁻⁶ K ⁻¹)	-0.102*	Thermal conductivity k (W m K ⁻¹)	0.2
Thermal expansion coeff. α_2 (10 ⁻⁶ K ⁻¹)	23.138*	Density $ ho$ (Kg dm ⁻³)	1.153
Thermal conductivity k_1 (W m K ⁻¹)	5	Specific heat C $_{\epsilon}$ (J Kg $^{-1}$ K $^{-1}$)	1110
Thermal conductivity k_2 (W m K ⁻¹)	0.6		
Density $ ho$ (Kg dm ⁻³)	1.5692*		

884.53

DIGITAL IMAGE CORRELATION

DIC tracks changes in contrast to obtain **displacements** and hence calculate **surface strain fields** ($\Delta \epsilon$)

- Full field
- White light imaging technique

ϵ_{xx} change with loading frequency

THERMAL CAMERAS / Comparison

Model	Telops FAST IR MK2	FLIR AC655	FLIR Lepton 3.5
Туре	Photon Detector	Micro-bolometer	PCB mounted micro- bolometer
Sensor size	256 x 320 pixels	480 x 640 pixels	120 x 160 pixels
Sensitivity	25 mk	50 mK	50 mK
Size	321 × 199 × 176 mm	216 × 73 × 75 mm	10 × 12 × 7 mm
Cost	~ 100k GBP	~10k GBP	~300 GBP

THERMAL CAMERAS / Comparison

Photondetectors datasheet [1]

Characteristics	Photon Detector		
IR Camera	FLIR SC5500	Telops FAST M2k	
Detector material	InSb		
Spectral range	2.5 - 5.1 μm	1.5 - 5.4 μm	
Pixel dimension	30 µm	25 μm	
Cost	~£10	0,000	
Maximum frame rate at full	383 Hz	1910 Hz	
window	505 112	1910112	
Frame rate selection	Any value up to 383 Hz Any value up to 191		
Reading array	All pixel detectors at the same time		
Integration time	10 - 20,000 μs 0.27 μs to 513 μs		
Response time	10 - 20,000 µs 0.27 µs to 513 µ		
Sensitivity (NETD)	<20 mK <25 mK		
Resolution	320 x 256 pixels		
Cooling	Yes		
Analogue input	Yes		
Weight	3.8 kg	< 6 kg	
Size	310 x 141 x 159 mm	321 x 199 x 176 mm	

Microbolometers datasheet [1]

Characteristics	Standard microbolometer	Thermal core microbolometer	
IR Camera	FLIR A655sc	FLIR Lepton 3.5 radiometric	
Detector material	VOx	VOx	
Spectral range	7.5 - 14 μm	8 - 14 μm	
Pixel dimension	17 μm	12 µm	
Cost	~£10,000	~£500	
Maximum frame rate at full window	50 Hz	Limited at 8.7751 Hz	
Frame rate selection	50 Hz, 25 Hz, 12.5 Hz, 6.25 Hz, 3.13 Hz	8.7751 Hz	
Reading array	Each row of pixels at a time		
Thermal time constant	8 ms - fixed	12 ms	
Response time	24 ms (3 x thermal time constant)	36 ms (3 x thermal time constant)	
Sensitivity (NETD)	< 30 mK	< 50 mK	
Resolution	640 x 480 pixels 160 x 120 pixel		
Cooling	No		
Analogue input	No		
Weight	0.9 kg	0.9 g	
Size	216 x 73 x 75 mm	10.50 x 12.70 x 7.14 mm	

FLIR Lepton 3.5 radiometric

[1] Irene Jiménez-Fortunato. Development and integration of full-field imaging techniques for assessment of composite structures. 2021.

Lock-in filtering approach

The resin influence on Strip specimens TSA Results

The trend of $\Delta T/T_o$ is different for the two configurations with loading frequency.

Both layups "converge" to a similar level at high frequencies.

The **RRL** has an influence on ΔT and **changes the response** in this frequency domain (0.5 – 30.1 Hz).

UTS

75%

S

F

75%

34

TSA Results / OH [0,0,0,45,-45,0]_S

×10⁻

×10[·]

1.8

1.6

·

ΔT/T

0

×10⁻⁴

1.8

1.6

-

ΔT/T₀ (

8.0

0.6

0.4

0.2

 $\times 10^{-4}$

 $\times 10^{-4}$

0.8

0.6

0.4 0.2

0.5Hz

Thick RRL (pprox 12 μm) OH specimen

×10⁻

1.8

06

04

25.1Hz

TSA PHASE FULL FIELD IMAGES

[0,0,0,45,-45,0]_S

[0,45,-45,0,0,0]_s

TSA EXPERIMENTAL MODELS

Jiménez-Fortunato, D.J. Bull, O.T. Thomsen, J.M. Dulieu-Barton, Composites Part A: Applied Science and Manufacturing 149 (2021)

Resin rich layer

Ply 1	Orthotropic surface ply	
Ply 2		
Ply 3		Global laminate
Ply n		
Ply n+1	Midplane	

FEA NUMERICAL MODEL

Via a Python script, a parametric model has been developed in Abaqus:

- Geometry (H, W) of the specimen, number (N) and thickness (T) of plies,
 lay-up, material system are fully customisable.
- Inclusion of a superficial resin-rich layer (RRL).
- Symmetric displacement with a sinusoidal waveform applied to upper and lower faces of the specimen.
- Conduction between plies.
- **<u>Coupled temperature-displacement analysis</u>** (C3D8T brick elements).

*For more details on the model: Cappello, Riccardo, Giuseppe Pitarresi, and Giuseppe Catalanotti. "Thermoelastic Stres Analysis for composite laminates: A numerical investigation." *Composites Science and Technology* (2023): 110103.

TSA & FEA Model Results - Around the hole

TSA & FEA Model Results - Around the hole

Through thickness TSA analysis – FEA Model

Measuring the K_{t.thickness} (The Flash Method)

Main literature reference: 0.84 W/m*K [5]

[5] M.T. Saad, S.G. Miller, T. Marunda, Thermal characterization of IM7/8552-1 carbon-epoxy composites, ASME 2014 Int. Mech. Eng. Congr. Expos. (2014) 1–8.

Table 1. Thermal Properti	es of IM7/8552-1 Composite
---------------------------	----------------------------

Temperature	Thermal	Specific	Thermal
(°C)	Diffusivity	Heat	Conductivity
	(cm ² /s)	(J/g*K)	(W/m*K)
25	0.0068	0.85741	0.84126
50	0.0067	0.91981	0.88184
75	0.0065	0.98683	0.92572
100	0.0064	1.05835	0.97286
125	0.0063	1.13099	1.02034
150	0.0062	1.20378	1.06764
175	0.0061	1.28975	1.12186

The flash method

- The power source can be a laser or a flash lamp.
- The energy will then be absorbed by the specimen and emitted again on the top of the sample.
- This radiation results in a temperature rise on the surface of the sample.
- This temperature rise is recorded from an infrared (IR) detector.

The Flash Method

NUMERICAL MODEL WITH DIFFERENT K_{t.thickness}

Low K (0.6 W/m*K)

OH [0,45,-45,0,0,0]_S

OH [0,0,0,45,-45,0]_S

0.04

0.035

0.03

0.025

0.015

0.01

0.005

0.02 (-) VL(-)

High K (2.07 W/m*K)

OH [0,45,-45,0,0,0]_S

OH [0,0,0,45,-45,0]_s

*Loading frequency: 15.1Hz

FULL FIELD Ply by Ply $\Delta T/T_0$ - TSA Models (Residuals)

FULL FIELD STRAIN ANALYSIS AND FEDEF (Residuals)

