



#### Thermal and White Light Imaging Data Fusion for Complex CFRP Structures

<u>Janice M. Dulieu-Barton</u>, Geir Ólafsson, Rafa Ruiz Inglesias, Ole T. Thomsen, Meng Yi Song, Bassam Elsaied – University of Bristol

Carl Scarth, Andrew Rhead, Richard Butler – University of Bath

janice.barton@bristol.ac.uk









RESHAPING THE TESTING PYRAMID

#### Content



- 1) Background to CERTEST project
- 2) Data integration
- 3) Structural scale
- 4) Interim results
- 5) Outlook











# Evolution of structural integrity assessment A 12025

1.0 Structural testing and point measurements

Image Salford University

2.0 Validated FEA with full-field imaging





Thermoelastic stress analysis

**FEA** 











## Evolution of structural integrity assessment and a

1.0 Structural testing and point measurements

Image Salford University

2.0 Validated FEA with full-field imaging







**FEA** 

 $\sigma_{-} +$ 













## Evolution of structural integrity assessment

3.0 Integrating imaging and models – data fusion













#### **Motivation – CERTEST Programme Grant**











Structures

#### **Sub-component testing**





Schenck test machine

Material properties and layups extracted from WTB FE model





#### **Sub-component testing**





Schenck test machine









#### **Fusion metrics**



| Metric     | Metric     | Formula                                            | Explanation                     | FEA - DIC<br>150 0.2                                                                                                                                  |
|------------|------------|----------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| type       |            |                                                    |                                 | Experimental Mechanics (2023) 64:1095–1115<br>https://doi.org/10.1007/s11340-023-00973-8                                                              |
| Similarity | Residual   | $f_1 - f_2$                                        | Difference between fields       | RESEARCH PAPER                                                                                                                                        |
|            |            |                                                    | $Res > 0, f_1 > f_2$            | Quantitative Full-Field Data Fusion for Evaluation of Complex Structures                                                                              |
|            |            |                                                    |                                 | J. S. Callaghan <sup>1,2</sup> · D. Crump <sup>1</sup> · A. S. Nielsen <sup>3</sup> · O. T. Thomsen <sup>2</sup> · J. M. Dulieu-Barton <sup>1,2</sup> |
|            |            |                                                    | $Res < 0, f_1 < f_2$            | Received: 28 June 2022 / Accepted: 26 May 2023 / Published online: 28 June 2023<br>© The Author(s) 2023                                               |
|            |            | $\left(\frac{ f_2 - f_1 }{ f_1 }\right) \cdot 100$ | Relative difference             | -100 0 100                                                                                                                                            |
|            |            |                                                    | between similar fields.         | x (mm)                                                                                                                                                |
|            | Percentage |                                                    |                                 |                                                                                                                                                       |
|            | error      |                                                    | The difference between          | $ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                          |
|            | enor       |                                                    | $f_1$ and $f_2$ as a percentage | 崔 5000                                                                                                                                                |
|            |            |                                                    | , ((                            |                                                                                                                                                       |
|            |            |                                                    | amount of $f_1$                 |                                                                                                                                                       |
| Union      | Quotient   | $\frac{f_1}{f_2}$                                  | Division of fields              | 0<br>-0.2 -0.1 0 0.1 0.2<br>Res                                                                                                                       |









#### Moving up the scale





- Spar-cap-to-web **T-joint** subcomponent
- Blade subjected to pressure to suction side (PTS) bending

See presentation by Dr Tobias Laux in Hemlock/Oak 4<sup>th</sup> June 0920









#### **CFRP** aircraft structure C-spar







#### 0.25mm plies: [(45/-45/90/0)<sub>3</sub>]<sub>5</sub>









#### **Manufacturing variations**





The manufacturing procedure was designed to reduce evolution of typical features such as waviness and wrinkle defects









#### **Effect of eccentricity**













#### **Compression c-spar loading test rig**











Structures

#### **Compression c-spar loading test rig**











Structures

#### **Cameras used in the C-spar test**













#### **C-spar experimental results**

Structures











## Models, uncertainty and data fusion



Torsional springs with uncertain stiffness (K<sub>spring</sub>) model resistance at bearing

Residuals of DIC compared with average calibrated model









Hotspots highlight discrepancies

residual (mm)

– 3.4e-02 – 0.03

- 0.02

- 0.01

0.0e+00

#### **Fusion metric – initial results**













#### Conclusions

- Presented a data fusion approach for TSA/DIC/FEA
- Described the construction and manufacturing uncertainties in a realistic CFRP aircraft component
- Described a test that can be used to calibrate FEA models that are later used as basis for a Bayesian uncertainty analysis
- Identified several experimental uncertainties that were incorporated into the model
- Showed preliminary results of data fusion



















#### Engineering and Physical Sciences Research Council



CERTIFICATION FOR DESIGN: RESHAPING THE TESTING PYRAMID



















The Alan Turing Institute