

An optimal framework for assessing uncertain parameters in large-scale composites using nonlinear MS-GFEM.

J. Bénézech, L. Seelinger, A. Reinarz, R. Butler and R. Scheichl

Material & Structure Research Centre, University of Bath, Bath, UK

Method objectives:

- Multi-scale method designed for UQ
- Imperfection assessment No scale separation
- Leverage parallelisation
- Adapted to aerospace composites
- Not restricted by commercial software
- Implicit method

Problem:

- Multi-scale problem
 - Resolve stress distribution at the imperfection level
 - Structural effect (Nonlinear Geometry)
 - Nonlinear effect (Material NL, CZ)
- Uncertainty quantification (UQ) problem
 - Sub-component and upper levels
 - Virtual testing

http://dune-project.org/

3

Multi-scale Spectral Generalized Finite Element Method (**MS-GFEM**):

- Spectral Reduced Order Model •
- **Partition of Unity** operator to stitch ٠ together subdomains
- **Oversampling** improves accuracy of • coarse solution at interfaces
- A-harmonic optimal subspace ٠ $\succ \varphi_{h}^{j,k}$ mechanically admissible
- Scalable ٠

Optimal nonlinear framework: RASPIN type with spectral approximation space

Optimal nonlinear framework: RASPIN type with spectral approximation space

5

Restricted Additive Two-Level Schwarz

Dolean, V., Nataf, F., Scheichl, R., & Spillane, N. (2013). A two-level Schwarz preconditioner for heterogeneous problems. In *Domain Decomposition Methods in Science and Engineering XX* (pp. 87-94). Springer Berlin Heidelberg.

6

Optimal nonlinear framework: RASPIN type with spectral approximation space

Restricted Additive Two-Level Schwarz

Dolean, V., Nataf, F., Scheichl, R., & Spillane, N. (2013). A two-level Schwarz preconditioner for heterogeneous problems. In *Domain Decomposition Methods in Science and Engineering XX* (pp. 87-94). Springer Berlin Heidelberg.

 $t = t + \delta t$

Engineering and Physical Sciences Research Council

- Local GEVP //
- Local particular solution //
- Coarse space construction needs
 communication
- Gathering subdomain contributions
 needs communication

Geometric non-linearity

Cantilever beam bending test

- 7.4e+00

NISPI ACEMENT M

. 2

_ 0.0e+00

4 N

E=1.2 e6

 $\nu = 0$

Quadratic serendipity elements

REF: Sze, K. Y., Liu, X. H., & Lo, S. H. (2004). Popular benchmark problems for geometric nonlinear analysis of shells. *Finite elements in analysis and design*, *40*(11), 1551-1569.

force — global strains

Cohesive element implementation

Harper, P. W., & Hallett, S. R. (2008). Cohesive zone length in numerical simulations of composite delamination. *Engineering Fracture Mechanics*, *75*(16), 4774-4792.

Turon, A., Camanho, P. P., Costa, J., & Dávila, C. G. (2006). A damage model for the simulation of delamination in advanced composites under variable-mode loading. *Mechanics of materials*, *38*(11), 1072-1089. Camanho, P. P., Davila, C. G., & De Moura, M. F. (2003). Numerical simulation of mixed-mode progressive delamination in composite materials. *Journal of composite materials*, *37*(16), 1415-1438.

Cohesive element implementation

Harper, P. W., & Hallett, S. R. (2008). Cohesive zone length in numerical simulations of composite delamination. *Engineering Fracture Mechanics*, *75*(16), 4774-4792.

Turon, A., Camanho, P. P., Costa, J., & Dávila, C. G. (2006). A damage model for the simulation of delamination in advanced composites under variable-mode loading. *Mechanics of materials*, *38*(11), 1072-1089. Camanho, P. P., Davila, C. G., & De Moura, M. F. (2003). Numerical simulation of mixed-mode progressive delamination in composite materials. *Journal of composite materials*, *37*(16), 1415-1438.

Cohesive element implementation

Turon, A., Davila, C. G., Camanho, P. P., & Costa, J. (2007). An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. *Engineering fracture mechanics*, 74(10), 1665-1682.

Nonlinear MS-GFEM: Application to the CerTest demonstrator

- Full meso-scale → 2.1 Millions degrees of freedom (linear elements)
- University of Durham HPC: Hamilton8
 - 120 standard compute nodes, each with 128 CPU cores (2x AMD EPYC 7702), 256GB RAM and 400GB local SSD storage.

- 320 processors used (4 nodes)
 - 7342 DoF per subdomain
 - 25,000 DoF in the coarse space
 - Model order reduction factor: **90**

RES

Nonlinear MS-GFEM: Application to the CerTest demonstrator

Parameters:

University of **Southampton**

Elastic properties: ${f E}_{f i}\,\,{f G}_{f ij}\,{f v}_{ij}$

Fracture properties: $X_T X_C Y_T Y_C S_L Y_{3T} S_{13}$

Cohesive properties: N_{cz} T_{cz} S_{cz} G_{IC} G_{IIC} G_{IIC} BK,K_p

Boundary conditions: Ecc E_{rig}

Defect parameters: x_{delam} z_{delam} Interlayer

- ~ 4 minutes per load increment (CS construction + Newton iterations)
- 1 to 3 hours on 320 processors HPC

ER

Nonlinear MS-GFEM: Comparison with experimental DIC data

14

Nonlinear MS-GFEM: Exploration of the design space

Nonlinear MS-GFEM: Exploration of the design space

16

Conclusions

- Implementation & test of the **nonlinear MSGFEM**
- Very efficient, parallel and scalable method design for large-scale problem
 Nonlinear solution for 2.1 M DoFs problem in 1-3 hours
- No scale separation assumption: <u>ANY defect</u> region | shape | size
 - Independence on the domain decomposition
- Outlook: Spectral nonlinear approximation Offline / Online

