



# Characterization of micro-structural features in complex parts for use in digital technologies

Vincent K. Maes and James Kratz





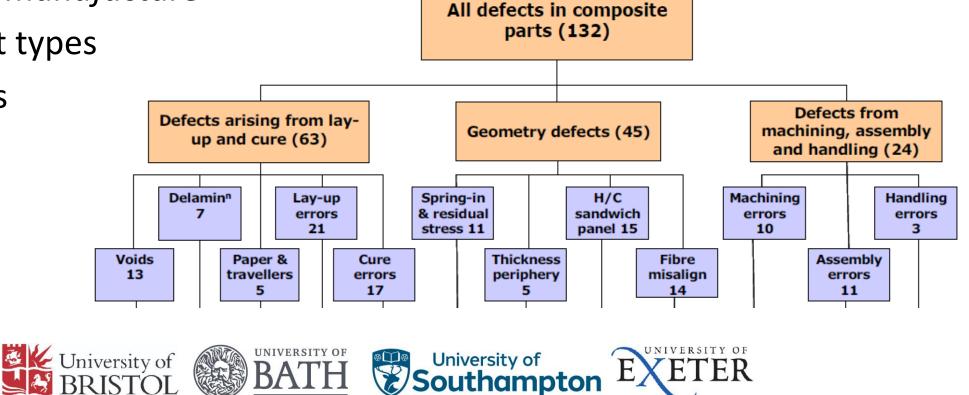


#### Overview

- Background
- The C-spars



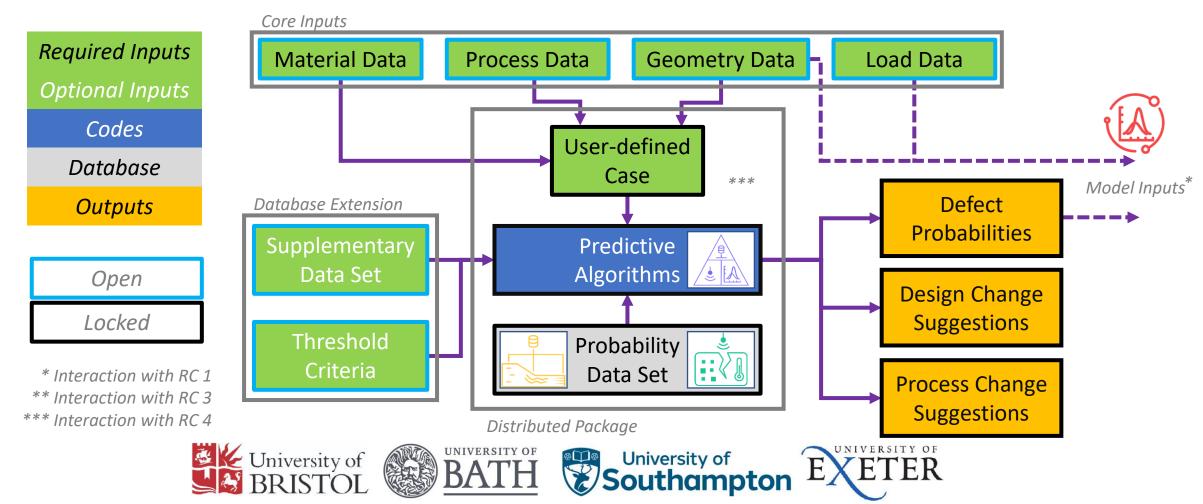









#### Background: Database Need


- Kevin Potter: Understanding the origins of defects and variability in composites manufacture
- 130+ defect types
- 60+ sources







#### Background: Database Conceptions







# Background: Literature Review

- 300+ publications reviewed
- 74 with extractable trends
- 15+ parameters linked to defects

 $DefectState = f(material, geometry, process) + \epsilon$ 

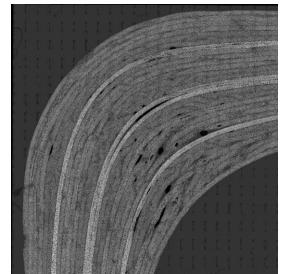
Fibre volume fraction -

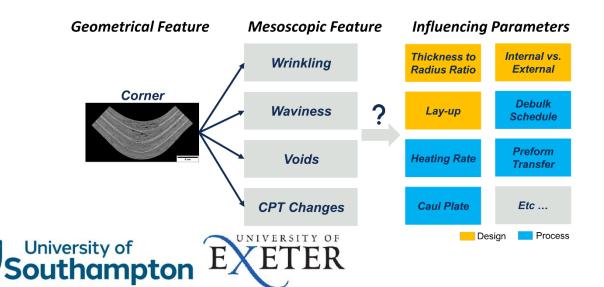
Anisotropy Fibre architecture Resin type Toughening/interleaf

Curvature (single/double) Tool material Thickness change Caul sheet + r Convex vs. Concave Out time (she

University of BRISTOL




Tool materialInherent variabilityCaul sheet + material Uncontrolled variablesOut time (shelf life)Cure temperature + pressureUniversity ofCure temperature + pressureUniversity ofEXETER




#### Background: New Taxonomy

- Industry and Literature data is limited:
- New data gathering needed for:
  - Complex defects
  - Evaluate repeated parts
  - Variations in real parts
- Published literature review (P1)
  - University of BRISTOL







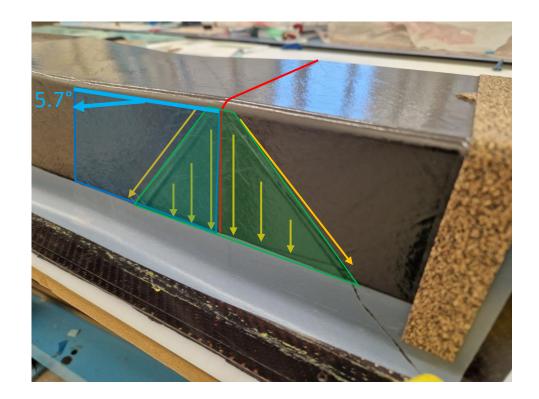




# The C-spars: Manufacturing

- 5 spars made:
  - 2 Baseline Manufacturing Trial
  - 1 Baseline
  - 3 Embedded delamination
- Autoclave cured:
  - In sets of two (single envelope bag)
  - With traveller plates
- Trimmed to final dimensions at NCC





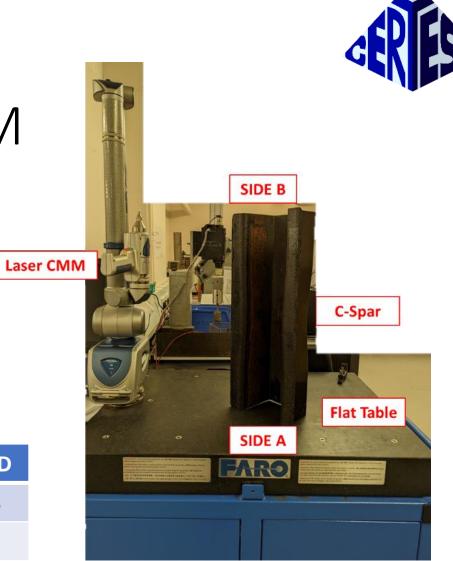





#### The C-spars: Geometry Driven Features

- Web and corners are well formed
- But wrinkles occurred:
  - In +/-45 and 90 plies
  - At start of recess (x4)
  - Contained in triangular area
  - Caused by excess length
- Fibre misalignment occurs in 0 plies in transition





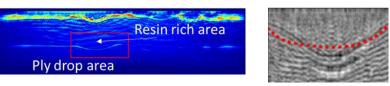



## The C-spars: Metrology - CMM

- Using Faro Arm at Bristol
- Scanned:
  - Pre-trimming
  - Internal & External Surface
- Collected basic metrics pre-trimming:

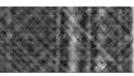
|                    | CS.01.P | CS.02.P | CS.03.D | CS.04.D | CS.05.D |
|--------------------|---------|---------|---------|---------|---------|
| Internal Angle [°] | 89.21   | 89.19   | 89.47   | 89.45   | 89.38   |
| Thickness [mm]     | 6.082   | 6.130   | 6.191   | 6.111   | 6.133   |











#### The C-spars: NDT - Eddy Current & Ultrasound

- For C-spar full scale inspection:
  - Applied immersion TFM-FMC UT:
    - Resin rich areas, voids, wrinkling
  - Developed 3D Eddy Current system with lift-off compensation:
    - In-plane waviness & wrinkling
  - Developed parametrised strategy
  - Developing registration techniques
- Data still being evaluated



#### Example outputs from UT scanning





New EC scanning system (left) and sample in-plane orientation reading (right)





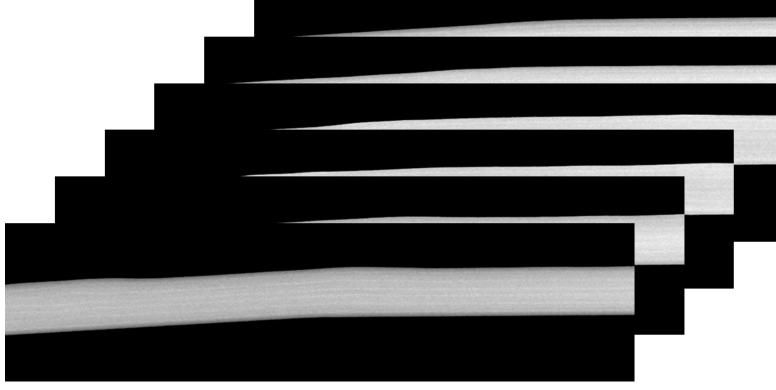
## The C-spars: NDT - X-CT

- Scanned using D5
- Pre-loading:
  - Local Scan:
    - Focused on wrinkles
    - High resolution ≈40 micron
  - Global Scan:
    - Captures full geometry
    - Medium resolution ≈80 micron
- Post-loading:
  - Local Scan:
    - Focused on damage
    - High resolution ≈40 micron














# The C-spars: X-CT Analysis

- Using:
  - 2D Slices
  - From 37µm scans
- Extract:
  - Fibre wrinkling
  - Voids











## The C-spar: Defect Database

• 2 stage process:

|            | 2D Com                                                                             | pute       |                                                                                                                                               |
|------------|------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| ROI        | ID                                                                                 | ROI        | ID                                                                                                                                            |
| Slice      | #                                                                                  | Meso Voids | [Location, Orientation, Volume,                                                                                                               |
| Meso Voids | [Location, Area]                                                                   |            | Aspect Ratio]                                                                                                                                 |
| Wrinkling  | [Location, Amplitude, Wavelength,<br>Skew Factor, Through-thickness<br>decay rate] | Wrinkling  | [Ply, Start Location, Amplitude,<br>Wavelength, Growth Rates, Running<br>Angle, Running Length, Skew Factor,<br>Through Thickness Decay Rate] |

Accompanied by rich meta data (*material*, *geometry*, *process*)







#### Summary

- Higher dimensional characterization to decouple defect data into:
  - 1. Low resolution data for high fidelity simulations
  - 2. Database with suitable metrics
- Avoid meshing a CT scan of a composite structure ... maybe this will be easier in 15 years?







# Thank you for listening

Questions now or e-mail:

vincent.maes@bristol.ac.uk

