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Engineering and
Rt Background cE ES\

* All predictions made by engineers are subject to uncertainty:

Manufacturing uncertainty

How accurate are models?

How representative are physical tests of reality?

Unknown guantities e.g. internal defects/features, damage

* Bayesian inference helps us quantify, and reduce this uncertainty using new data
. . Posterior
Prior belief + Data —] .
belief

 Calibration is a way of using experimental data to inform future model predictions while accounting for
unknown model inputs
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e Stereo DIC from Compression tests on a C-spar
undertaken at University of Bristol using
MatchlD.

Steel

* Focus on longitudinal displacement on End blocks

external corner.

* +4mm load eccentricity relative to gauge
section centroid.

* ABAQUS model with material, boundary
condition, and geometric uncertainty.

* Can we use the test data to assess model
accuracy given this uncertainty?

* Main challenge is using large volumes of DIC
data spanning both time and space, to

calibrate full-field model output. Pinned

support

Test fixture design showing boundary conditions
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Eh5'hs:d, ABAQUS Model and Uncertainties GETES*

* Modelled with 4536 SC8R continuum shell
elements (9354 nodes). |l¢—160mm—>pl< 420mm pla— 160mm—>|
* Simply supported at reference nodes offset : :
from spar. -

* Uncertainty in boundary conditions.

* Geometric uncertainty in (ply) thickness
and corner thinning.

* Uncertainty in longitudinal modulus E ;.

Truss elements with uncertain stiffness (K, ) model rig compliance

Uncertain eccentricity bias models uncertainty
in loading axis position
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Set of tools developed (or adopted) for mapping DIC onto an ABAQUS mesh

and making pointwise comparisons: Cartesian
coordinates

Element (surface)
coordinates

1) Point-cloud/mesh registration in CloudCompare?.

2) Newton-Raphson method to transform from Cartesian coordinates to
local element coordinates.

. . . . . ® (g, h)
3) Interpolation across spatial domain using ABAQUS shape functions.

4) Linear interpolation across time domain to match solver increments.

[
o
Initial alignment of DIC

and mesh

DIC data transformed into element
coordinates, arranged in regular grid.

-1.5

Aligned DIC and model [-1 .7e+00

1CloudCompare Version 2.11.3 Bl University of
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* Following Higdon et al.?, method for calibrating models with vector-valued output:

y = n@) + &

DIC point cloud Abaqus model Error

0" = uncertain inputs we want to learn about:
Eq1, ply thickness, eccentricity bias, Ky, radius thinning, K¢, .,

* Aninverse problem:

- yisknown.

- 0" and magnitude of error &€ are uncertain.

- Gaussian process emulator used as surrogate for Abaqus, i, which also has uncertain parameters.
* Infer values for uncertain parameters by first specifying prior distributions.

* Then sample from the posterior distribution using Hamiltonian Monte Carlo (No-U-Turn Sampler, NUTS) in Stan3.

2D. Higdon et al, “Computer model calibration using high-dimensional output”, Journal of the American Statistical Association, 2008
3 Stan modeling language users guide and reference manual, Version 2.26.1, https://mc-stan.org
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Calibration: Prior distributions

>
[

Prior parameters: mean and standard deviation for Gaussian and Half-normal, upper and lower bounds for uniform

Ei1 (GPa) t,,(mm) Eccentricity bias (mm)  log(Ky,) Radiusthinning (mm) log(K;ping)
Distribution | Gaussian | Gaussian Gaussian Uniform Half-normal Half-normal
Parameter 1 140.9 0.125 0.0 55 0.0 0.0
Parameter 2 8.454 0.005 0.667 18.0 0.667 2.0
. o 40 1 0.06
* What do | believe about the uncertain inputs before the test? c
€
. N > 30
Not a measure of variability Z 0.04 ©
* Rigstiffness, K, based on parametric study of initial é 20 %
gradient of force-displacement curves. & 0.02 3
210
* Compressive modulus E;; taken from published coupon test =
data®. Hexcel state 150GPa>. Which value is correct? S o b v vy 0
5 10 15 20

log (Kiryss)

Initial gradient of force-displacement curve at reference node,
vs log of rig stiffness

4E. Clarkson. “Hexcel 8552 IM7 unidirectional prepreg 190 gsm & 35% qualification statistical
analysis report.” NCAMP, 2019.
> HexTow® IM7 Carbon Fibre, Product Data Sheet, HEXCEL
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* Surrogate model fitted to ABAQUS output from 60 Latin Hypercube

250
samples across input prior distributions.
* Decompose output into p = 16 principal components via SVD?:
200
n(6") ~ Xi_, ¢:i(x, t) w;(6")
* Basis vectors ¢; capture spatial and temporal dependency.
i cap P P P Y S 150 Legend
v .
by Prior sample
O X DIC
2 100-
Measurement
50 ) 2
location
» 4

D T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Displacement (mm)

Force vs displacement at point on web for
training samples and DIC
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* Surrogate model fitted to ABAQUS output from 60 Latin Hypercube

samples across input prior distributions.

* Decompose output into p = 16 principal components via SVD*:

n(6*) = X1, ¢;(x, t) w;(8%)

» Basis vectors ¢; capture spatial and temporal dependency.

First three basis vectors for emulator

Bl University of
MEI BRISTOL

250

200 1
= 150 Legend
& .
by Prior sample
O X DIC
S 100

Measurement
50 1 . 2
location
P

D T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5

Displacement (m

30 35 4.0
m)

Force vs displacement at point on web for

UNIVERSITY OF

WA 5 A T T University of
& BATH @Southampton EXETER

training samples and DIC

8/12



W Sencstio.  Calibration: Emulator for ABAQUS

Research Council

Surrogate model fitted to ABAQUS output from 60 Latin Hypercube

samples across input prior distributions.

250

Decompose output into p = 16 principal components via SVD*:

n(6*) = X1, ¢;(x, t) w;(8%)

Basis vectors ¢b; capture spatial and temporal dependency.

P

0!

200

50

0 T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5

First three basis vectors for emulator

Bl University of
MEI BRISTOL

Legend
Prior sample
X DIC
Measurement
] 2
location
o ¥

Displacement (m

30 35 4.0
m)

Force vs displacement at point on web for
training samples and DIC

UNIVERSITY OF

WA 5 A T T University of
&) BATH @Southampton EXETER

8/12



, b

W Bition.  Calibration: Emulator for ABAQUS cE Es*

| Research Council

* Surrogate model fitted to ABAQUS output from 60 Latin Hypercube e
samples across input prior distributions.
* Decompose output into p = 16 principal components via SVD*:
200 =—=====~=- .
n(6%) = ¥_, i (x,t) w;(8%)
» Basis vectors ¢; capture spatial and temporal dependency. = 150 Legend
* Gaussian process emulators w; model uncertain input dependency. % Prior sample
* Need to truncate output to 200kN so solver converges at all g X bic
increments for all training samples. L 160,
/ - Measurement
, 50 1 , -
location
etc. P’v

0 T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Displacement (mm)

Force vs displacement at point on web for

First three basis vectors for emulator training samples and DIC
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i E,; (GPa) Ply thickness (mm) Eccentricity bias (mm)
0 _ S T
e ) 2 Legend
w B Wil Prior
£ o D o I Posterior
o | | o
= —
=0
o o | o |
= [ T T T T 1 o [ T T T 1 = I T T T T T 1
6 7 8 9 10 1 0.0 05 1.0 15 20 0 1 2 3 4 5 B
log(Kyruss) Radius thinning (mm) log(Kspring)
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(T E;: LL ) \\ L 'I': |
Qs O g \ [
o _ o o -
o N I I | T T | 1 . o [ | | 1 = —I | | | | T 1
110 120 130 140 150 160 170 0.11 0.12 0.13 0.14 3 -2 -1 0 1 2 3
i E,; (GPa) — Ply thickness (mm) _ mm Eccentricity bias (mm)
° | | - S P Legend
L L = I e ] Prior
S = l g o NG I Posterior
g = [ T T T T 1 E: N I T T T 1 ’é: N I T T T T T 1
6 7 8 9 10 11 0.0 05 1.0 15 20 0 1 2 3 4 5 6
log(Kuss) Radius thinning (mm) 108(Kspring)

Kiruss Shifts to very low values (approx. 40% knockdown in overall stiffness) indicating significant rig or machine compliance.
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Physical Science: Results: Posterior distributions d Es*
w = : LL ) \ L. @ : ]
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= T T T T T T 1 - T T T 1 S T T T T T T |
110 120 130 140 150 160 170 0.1 0.12 0.13 0.14 3 1 0 1 2 3
2 - _ E,; (GPa) — Ply thickness (mm) _ mm Eccentricity bias (mm)
(o] | :_ _ __ ; - —h.._ Le d
il B - | = ] ger.1
L | T w o Prior
£ o | £ g o NG I Posterior
g _| = I—._ E: | é ] \
f:l ’I E[. 9| 1IIZI 1]1 0 IO 0 15 1 TO 1 T:? 2 : 0 EI' 1I 3I ] 41 T r‘
log(Kruss) Radius thinning (mm) 108(Kqpring)

Kiruss Shifts to very low values (approx. 40% knockdown in overall stiffness) indicating significant rig or machine compliance.
* E4; shifts towards higher values, with mode of 164 GPa similar to tensile modulus.
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Results: Posterior distributions
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PDF
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3 2 4 0 1 2 3
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1 Pt Legend
1 Prior
i N I Posterior
0o 1 2 3 4 5 &
log(Kspring)

Kiruss Shifts to very low values (approx. 40% knockdown in overall stiffness) indicating significant rig or machine compliance.
E,; shifts towards higher values, with mode of 164 GPa similar to tensile modulus.
* Strong shift of loading axis via eccentricity bias, which later highlighted a manufacturing error.
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* Run posterior samples through emulator and average out uncertainty to get prediction.

Longitudinal displacement (mm)
1.0e-01 -02 -04 -06 08 -1 -2 -14 -1.7e+00
|

Mean calibrated posterior prediction
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* Run posterior samples through emulator and average out uncertainty to get prediction.

Longitudinal displacement (mm)
1.0e-01 -02 -04 -06 08 -1 -2 -14 -1.7e+00

" | | | " —

Mean calibrated posterior prediction
(with DIC overlaid)
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* Run posterior samples through emulator and average out uncertainty to get prediction.

 Standard deviation indicates regions of highest posterior uncertainty.

Longitudinal displacement (mm) Prediction uncertainty (mm)
1.0e-01 -02 -04 -06 -08 -1 -1.2 -14 -1.7e+00 0.0e+00 0.005 0.01 0.015 0.02 0.025 3.0e-02

' es— | | L e—

Mean calibrated posterior prediction
(with DIC overlaid)
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* Extract force-displacement at fixed location to visualise fit

200 1

175 -

150 -

=
%)
(9]

Force (kN)
o
o

~]
wu

Mean =——
95% interval (prediction) ———

50 -
95% interval (plus error) -----
251 DIC used in fit X
04 Other DIC X

0.00 025 050 075 1.00 125 150 1.75
Displacement (mm)
Posterior prediction for point (X) on web
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RL

* Extract force-displacement at fixed location to visualise fit

* Subtract the DIC from each increment of calibrated model to
visualise residuals highlighting regions of discrepancy.

200 1
175 -

150 -

Force (kN)

e

M (8] -~ o N
u o 8] o (8]

o

Engineering and
Physical Sciences
Research Council

Mean

95% interval (prediction)

95% interval (plus error)
DIC used in fit
Other DIC

0.75 100 1.25

Displacement (mm)
Posterior prediction for point (X) on web

Vé University of /%
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Results: Residuals with data

of ‘ES\

absolute value of residuals with DIC (mm)

'

Absolute residual of mean prediction compared with DIC
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* Extract force-displacement at fixed location to visualise fit

* Subtract the DIC from each increment of calibrated model to absolute value of residuals with DIC ¢(mm)
visualise residuals highlighting regions of discrepancy. 0.0e+00 0.01 0.02 0.03 0.04 5.0e-02
— | | ! —
200 1 ’ K
Lis 12.5 kN
150 -
High discrepancy as 5kN load on
12X structure for “zero” DIC image
0 =

Force (kN)
=

Mean

50 - 95% interval (prediction) ———
95% interval (plus error) -----
i DIC used in fit X
01 Other DIC X

0.00 025 050 075 100 125 150 1.75
Displacement (mm)
Posterior prediction for point (X) on web Absolute residual of mean prediction compared with DIC
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* Extract force-displacement at fixed location to visualise fit

e Subtract the DIC from each increment of calibrated model to

visualise residuals highlighting regions of discrepancy.

200 -

175 -

Force (kN)
e -
o N un
e A B2

~J
Ul

Mean

95% interval (prediction) ———

o
Physical Sciences Results: Residuals with data ¢E ES\

absolute value of residuals with DIC (mm)
0.0e+00 0.01 0.02 0.03 0.04 5.0e-02

' | | O —

200.0 kN

Hotspots near radii

50 A
95% interval (plus error) -----
i DIC used in fit X
01 Other DIC X
000 025 050 075 100 125 150 175

Displacement (mm)
Posterior prediction for point (X) on web
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could merit further investigation 2.8

Some discrepancies
in Boundary conditions

Absolute residual of mean prediction compared with DIC

University of

outhampton

UNIVERSITY OF

EXETER 11/12



Research Council

Engineering and .
. Physical Sciences Conclusions and future work

‘Es\

* Demonstrated a powerful statistical toolkit for comparing FE models against
DIC while accounting for uncertainty in model inputs and test data.

* Overcame challenge of calibrating full-field output using high volumes of data.
* Uncertainty in boundary conditions very important.

* Highlighted manufacturing error helping with ongoing model validation.

Future work could include:

- Using full displacement vector.
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® Calibrated model
® DIC

Demonstrated a powerful statistical toolkit for comparing FE models against
DIC while accounting for uncertainty in model inputs and test data.

Overcame challenge of calibrating full-field output using high volumes of data.

Uncertainty in boundary conditions very important.

Highlighted manufacturing error helping with ongoing model validation.

Future work could include: DIC vs model point cloud with discrepancy in boundary

u_x (mm) u_y (mm) u_z (mm)

Usi ng fu” displacement Vector' -6.0e+00 -jl wL\?’ ~J2 vl] 7.4e-01 -5.2e+00 ~:2 ? ,’|2 5.2e+00 -2.6e+00 “12 115 ~|] 05 0.0e+00

More complex phenomena such as failure.

Use in model validation

Informing future choice of experiments.

DIC overlaid on calibrated model predictions for historic test data
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Thank you for listening!

Any questions?
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