

Implementation of Second-Order Homogenisation using Shell Elements for Woven Composites

Athira Anil Kumar¹, Aewis KW Hii¹, Stephen Hallett¹, Bassam El Said¹

21st European Conference on Composite Materials

Textile Composites – II 4 July 2024

1. Bristol Composites Institute, University of Bristol, Bristol, UK

athiraanil.kumar@bristol.ac.uk

3D Woven Composites

Applications

Advantages

- Ease of manufacturing
- Reduced weight
- Improved interlaminar fracture toughness
- Better delamination resistance
- Better impact performance

Material behaviour dependency on manufacturing process and final geometry

Challenges

Need for multiscale modelling

First Order Homogenisation

Coarse Scale Solid Model

Fine Scale Solid Model

Second Order Homogenisation

Coarse Scale Shell Model

Aewis K.W. Hii, Bassam El Said, A kinematically consistent second-order computational homogenisation framework for thick shell models, Computer Methods in Applied Mechanics and Engineering, Volume 398, 2022.

Development of Weave Models

S i m T e

X

Weaving Simulation

- Multi-filament method
- Digital Element Simulation
- Near-net shape

Voxelisation

- (left) voxelised yarn elements & (right) representative volume element of 2x2 twill weave.
- SimTex PrePost: build mechanical models for numerical homogenisation

4 Point Bending (4PB) Test

Second-order comparison for different offsets

Short beam Shear (SBS) Test

Future Work

Code Integration

Implementation of secondorder homogenisation
framework using shell elements
for woven composites

and Compatibility study

Development of second-order homogenisation framework using solid elements for woven composites

Implementation of Machine Learning techniques for optimisation

