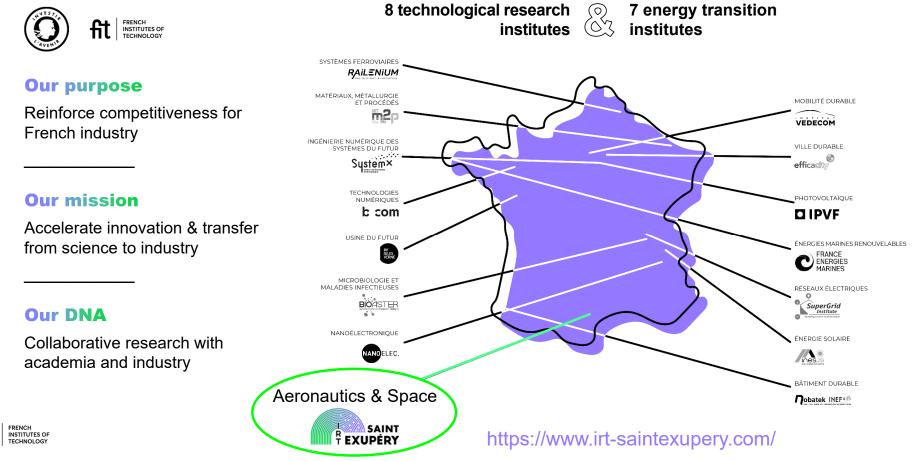


V&V-UQ framework to assess credibility of simulation of composite structures


Ludovic Barrière, PhD

Project Leader – TRUST (Towards cRedible simUlation of compositeS sTructures)

Futur Investment Program : multidisciplinary thematic institutes. R EXUPÉRY

SAI

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

hΤ

Credible simulations for composite structures? р а g

e

3

"Clean Aviation aims to develop, integrate and demonstrate disruptive technological innovations into new aircraft concepts by 2030-2035". +30% energy efficiency by 2035. Paving the way towards « Net-zero emission aviation by 2050 »

What does that mean for industry?

- Combination of disruptive technologies related to the airframe with new propulsion systems and their integration.
- □ Reduce development time, product certification and overall time to market
- □ Ensure that disruptive new technologies meet high levels of safety and reliability
 - while shorter time for maturation of technology
 - □ while limited in service experience for some disruptive technologies

Composite structures need to adapt to:

- □ New designs to integrate innovative systems, and further reduce mass
- □ New threats (e.g. exposure to cryogenic temperatures)
- New materials with possibly higher intrinsic variabilities (e.g. bio-sourced)
- New manufacturing/assembly processes (e.g. Out-Of-Autoclave, Welding)

FRENCH INSTITUTES OF TECHNOLOGY

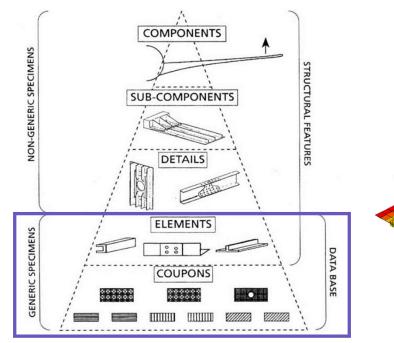
© IRT Saint Exupéry • All rights reserved • Confidential and proprietary

How to assess credibility?

Key Enabler:

Credible simulation capabilities

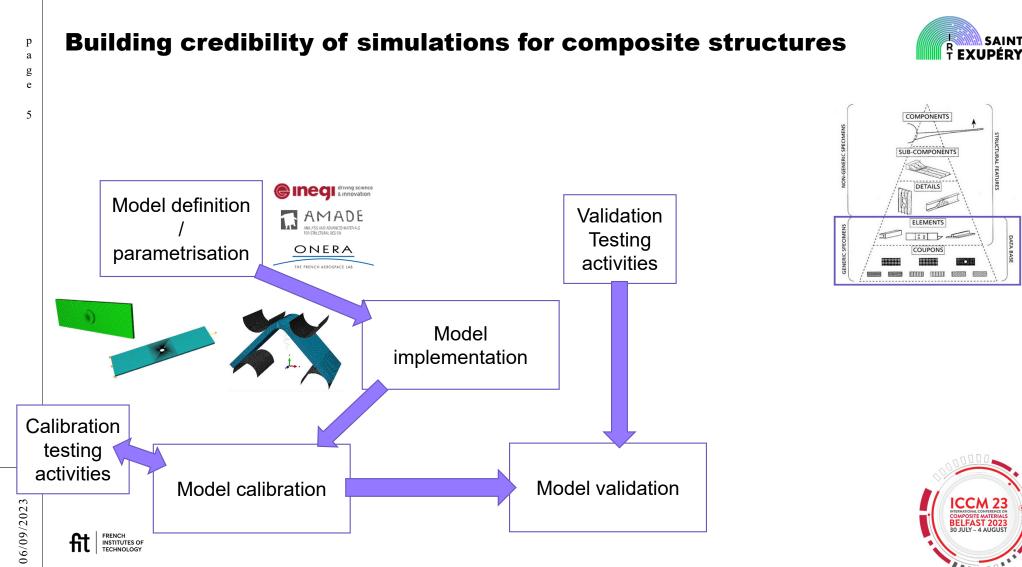
06/09/2023

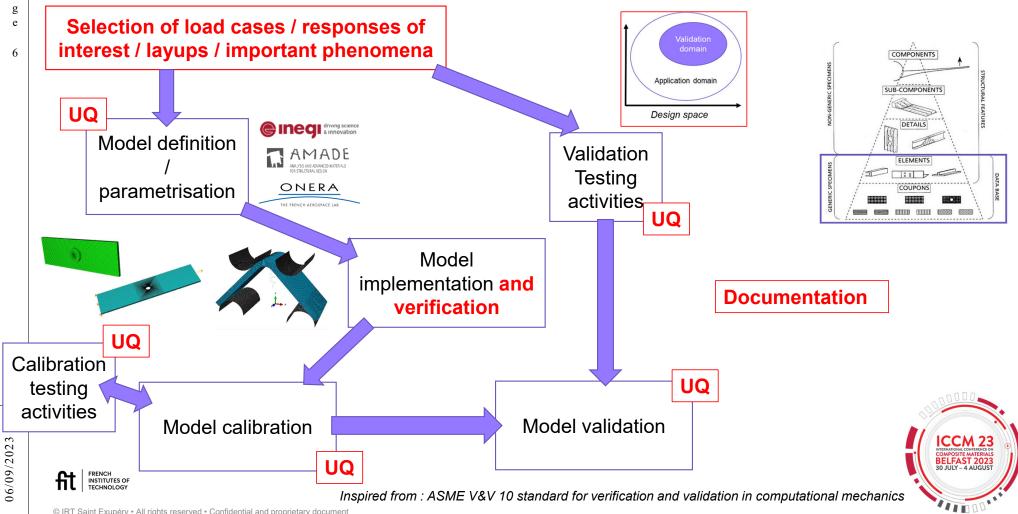

Building credibility of simulations for composite structures

Building block approach - system decomposition

Considering lower-levels of the test pyramid :

- Composite damage models are already tractable at this scale
- A lever to reduce the lead-time to provide material allowables and/or validate design principles for (new) composite materials
- De-risk introduction of new materials, accounting for new physical phenomena, predict the KDF of manufacturing defects/singularities
- Build validated generic analysis capabilities




p a g e

4

EXUPÉRY

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

р

а

Building credibility of simulations for composite structures

assessment [Oberkampf 2007]								
MATURITY	Maturity Level 0	Maturity Level 1	Maturity Level 2	Maturity Level 3				
Representation and Geometric Fidelity		Assessed						
Physics and Material Model Fidelity			Assessed					
Code Verification		Assessed						

Assessed

Assessed

Assessed

Example of PCMM after maturity

Usage Level	Scoping study	Preliminary design	Final design	Final design based on M&S			
0	Individual judgment and experience						
1	Internal peer re traceab						
2	Formal assess detailed cha						
3	Formal assessment of accuracy and completeness by independent peer review group, precise characterisation and all data are traceable to formal references						

Maturity levels

V&VUQ process should support the evidence-building for each credibility element

06/09/2023

p a g e

7

Credibility element

Solution

Verification Model

Validation Uncertainty Quantification

and Sensitivity Analysis

The need for a V&VUQ framework

Building credibility is a complex process, relying on advanced methodologies.

Some challenges:

p a g

e

8

06/09/2023

- Methodologies for Quantification of Uncertainties require expertise and should be adapted to the particular context of composite structures and models
- □ Provide model developers with established guidelines, tools, workflows, database management, to assess credibility of their models identify limits and rooms for improvement for further modelling developments
- □ Allow comprehensive/unbiased comparison of models with complementary domains of validity
- Decision-making bodies should validate the process of establishing credibility
- Once credibility is assessed, models should be usable for particular design purposes within their domain of validity (optimisation, calculation of design values, structural sizing)

Proposal: capitalise V&VUQ capabilities/process into software platform(s) to support the community tackling these challenges

Software platform(s) for V&VUQ capabilities

A library for virtual testing integration and decision-making support

https://gemseo.readthedocs.io/en/stable/index.html

gemseo / dev / gemseo · GitLab

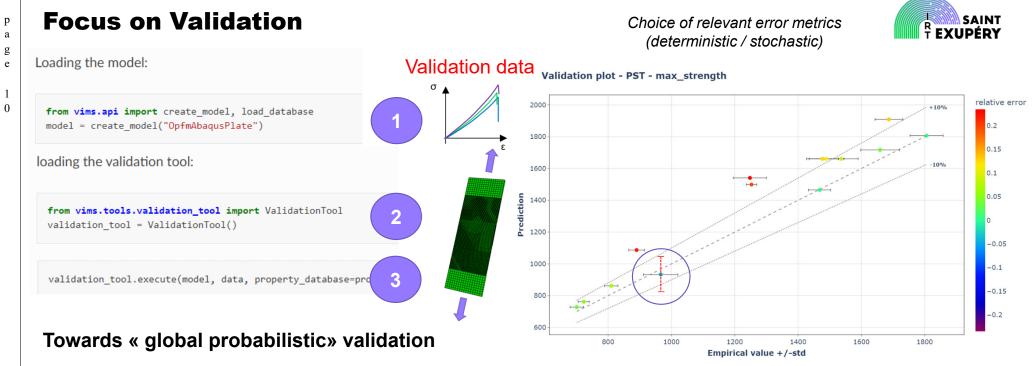
06/09/2023

р а g e

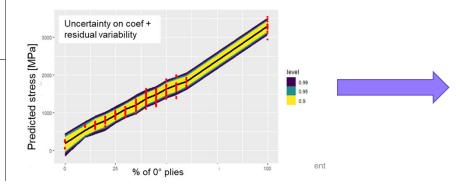
9

INSTITUTES OF TECHNOLOGY

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

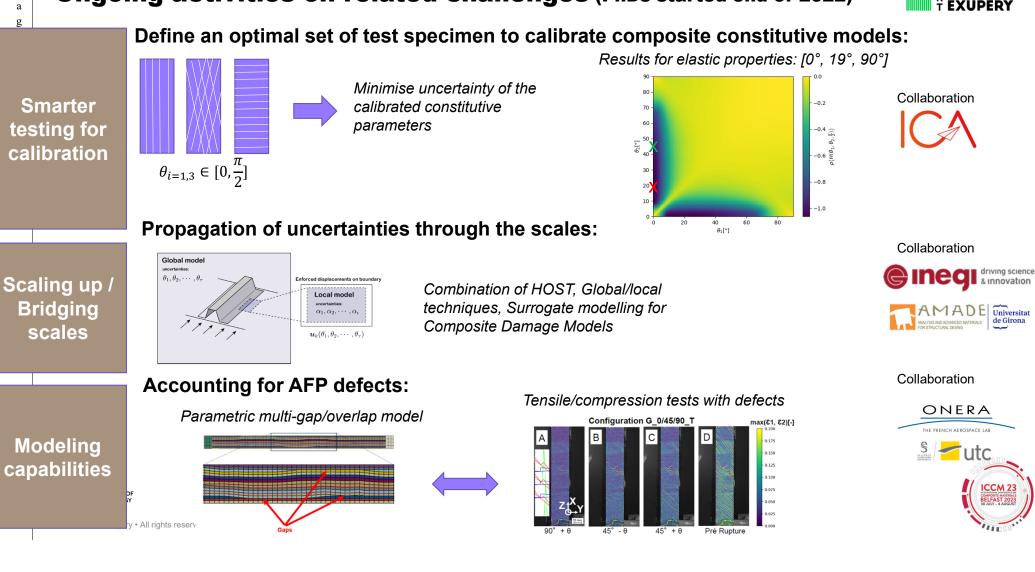

Develop V&VUQ specific capabilities

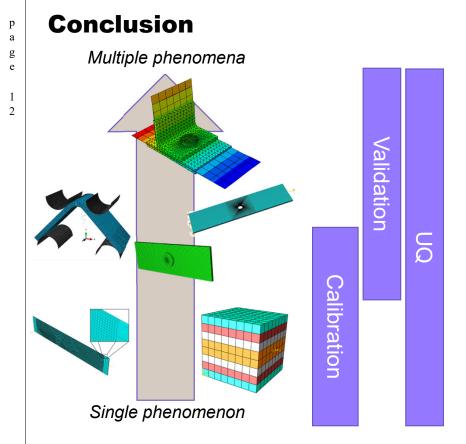
- □ Framework for model + knowledge integration / verification
- □ Configurable tools/workflows to implement the V&VUQ process
- Extraction of credibility indicators
- Visualisation dashboard to support decision-making
- □ Traceability of models and analyses / link with database
- □ Application-specific plugins (e.g. Composites)


Develop generic capabilities for:

- (multi-disciplinary) analyses / optimisation / calibration
- DOE, Sensivitity analyses, Uncertainty quantification / Propagation
- □ Machine Learning / Surrogate modeling / Active Learning
- Parallelisation / execution on HPC
- □ Generic visualisation

Building a bayesian Linear Regression for Plain Strength Tension


Validate the model prediction against trends/statistics captured by the datadriven model over the validation domain


Ongoing activities on related challenges (PhDs started end of 2022)

р

- The topic of V&VUQ for composite damage models comes with numerous scientific issues
- It is an opportunity for the scientific community to transfer modeling capabilities and identify/cover the gaps
- It is a must for developping usage of advanced simulation to support certification of composite structures (in complement of V&VUQ-oriented experimental plan)
- Development of software capabilities should contribute to speed-up the setup and adoption of the V&VUQ framework

This work is mainly carried out in the framework of IRT's collaborative research programs (VITAL/TRUST) since 2019. Industrial funding partners: Airbus, Airbus Atlantic, Ariane Group, Hexcel, Eikosim Academic partners: INEGI, U. of Girona, ONERA, INSA Toulouse)

© IRT Saint Exupéry • All rights reserved • Confidential and proprietary document

06/09/2023

TRUST Team

Stéphanie Miot Bénédicte Reine Florent Grotto Sébastien Bocquet Clément Laboulfie Matthias De Lozzo Stéphane Guinard (seconded from Airbus) Jean-Philippe Navarro (seconded from Airbus) Jean-Philippe Navarro (seconded from Airbus) Attilio Chiappini (seconded from Airbus) Pierre Baudoin (seconded from Eikosim) Romain Lopez-Surjus (PhD student) – under the supervision of Jean-Charles Passieux, Robin Bouclier, Jean-Noel Perié Paolo Minigher (PhD Student) – under the supervision of Albertino Arteiro, Albert Turon, Pedro Camanho Loic Marquet (PhD Student) – under the supervision of Cédric Huchette, Christian Fagiano, Alain Rassineux

Thanks also to:

Mélanie Herman, Jean-Luc Leon-Dufour, Chantal Fualdes, Santiago Garcia-Rodriguez, Martin Desailloud, Maxime Hamadi, Laurent Dubreuil, Nicolas Swiergiel, Ludovic Ballère, David Tilbrook, Jeremy Doucet, Florent Mathieu, Renaud Gras, Frédéric Laurin, Javad Fatemi, Aravind Sasikumar

french INSTITUTES OF TECHNOLOGY

06/09/2023

Thank you for your attention

