Three-dimensional reconstruction, taphonomic and petrological data suggest that the oldest record of bioturbation is a body fossil coquina

by CHRISTOS PSARRAS1,7,* ID, PHILIP C.J. DONOGHUE1 ID, RUSSELL J. GARWOOD2,3 ID, DMITRIY V. GRAZHDANKIN4 ID, LUKE A. PARRY5 ID, VLADIMIR I. ROGOV4 ID and ALEXANDER G. LIU6,* ID

1Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 4QQ, UK; philip.donoghue@bristol.ac.uk
2Department of Earth & Environmental Sciences, The University of Manchester, Manchester M13 9PL, UK; russell.garwood@manchester.ac.uk
3Natural History Museum, London SW7 5BD, UK
4Trofimuk Institute of Petroleum Geology & Geophysics, Koptyug Avenue 3, Novosibirsk 630090, Russia; dima.grazhdarkin@gmail.com, rogovvi@ipgg.sbras.ru
5Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK; luke.parry@earth.ox.ac.uk
6Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK; agscl2@cam.ac.uk
7Current address: Department of Historical Geology-Palaeontology, Faculty of Geology & Geoenvironment, National & Kapodistrian University of Athens, 15784 Zografou, Panepistimiopolis, Greece;cpsarras@geol.uoa.gr
*Corresponding author

Abstract: Fossil material assigned to Nenoxites from the late Ediacaran Khatyspyt Formation of Arctic Siberia (550–544 Ma) has been presented as evidence for bioturbation prior to the basal Cambrian boundary. However, that ichnological interpretation has been challenged, and descriptions of similar material from other global localities support a body fossil origin. Here we combine x-ray computed tomography, scanning electron microscopy and petrographic methods to evaluate the body or trace fossil nature of Nenoxites from the Khatyspyt Formation. The fossilized structures consist of densely packed chains of three-dimensionally preserved silicic, bowl-shaped elements surrounded by distinct sedimentary halos, in a dolomitized matrix. Individual bowl-shaped elements can exhibit diffuse mineralogical boundaries and bridging connections between elements, both considered here to result from silification and dolomitization during diagenesis. This new morphological and petrological evidence, in conjunction with recent studies of the late Ediacaran tubular taxa Ordinilunatus and Shaanxilithes from China, suggest that the Khatyspyt specimens most probably reflect a coquina deposit of Shaanxilithes-like body fossils. Our data support the possibility of Shaanxilithes-like organisms representing total group eumetazoans.

Key words: Ediacaran, sedimentology, taphonomy, Nenoxites, bioturbation, petrology.

Phylogenetic studies predict a Neoproterozoic origin for Metazoa tens of millions of years prior to the start of the Cambrian, and imply that the stem groups of most bilaterian phyla originated during the Ediacaran Period (635–539 Ma) (e.g. Erwin et al. 2011; dos Reis et al. 2015). Although often contentious (Cunningham et al. 2017), claims for body fossils of animals from the late Ediacaran Period (c. 574–539 Ma) have been bolstered by recent discoveries, analyses and developmental data, which together support the presence of total group (e.g. Liu et al. 2014; Evans et al. 2017; Cai et al. 2019; Dunn et al. 2019, 2021) and crown-group (Dunn et al. 2022) eumetazoans by the middle Ediacaran, as well as candidate bilaterians in Ediacaran fossil assemblages younger than c. 558 Ma (e.g. Fedonkin & Waggoner 1997; Gold et al. 2015; Evans et al. 2020; Willman & Slater 2021).

Trace fossils, which record the activity or behaviour of an organism, offer an independent record of metazoan evolution across the Ediacaran–Cambrian interval (Seilacher 1989; Budd & Jensen 2000; Buatois & Mángano 2016), with horizontal surface traces at 565 Ma being the oldest candidate total group eumetazoan traces (Liu et al. 2010; age constrained by Matthews et al. 2021). Meanwhile, systematic burrowing behaviour documented by earliest Cambrian ichnofossils has been considered to record the ecological transition from Ediacaran ‘matgrounds’ to Phanerozoic ‘mixgrounds’, revolutionizing sediment burial processes and nutrient cycling (e.g. Mcllroy & Logan 1999; Bottjer et al. 2000; Buatois &
Mángano 2011; Mángano & Buatois 2017, 2020; Tarhan 2018). The first appearance of the ichnofossil *Treptichnus pedum* is inferred to document a globally synchronous radiation of a specific complex burrowing behaviour, and defines the base of the Cambrian System (Brasier et al. 1994). However, a range of late Ediacaran trace fossils, comprising surficial or shallow horizontal burrows from nearshore marine settings younger than c. 555 Ma appear to be a prelude to Cambrian burrowing activity (e.g. Carboue & Narbonne 2014; Chen et al. 2018, 2019; Gehling & Droser 2018; Xiao et al. 2019; Darroch et al. 2021). Structures interpreted to record vertical ‘shuffling’ through sediment occur at c. 560 Ma (Menon et al. 2013), while latest Ediacaran strata contain meiofaunal burrows (Parry et al. 2017; Darroch et al. 2021), probing vertical traces produced by priapulid-like behaviour (e.g. Tarhan et al. 2020; Darroch et al. 2021; Turk et al. 2022), and very shallow burrows (e.g. Buatois & Mángano 2011; Meyer et al. 2014; Darroch et al. 2021).

Many of these examples have been considered to record the activity of bilateral organisms, but Ediacaran evidence of two other common products of bilateral behaviour (not necessarily unique to bilaterians), vertical meniscate sediment-penetrative burrowing and bioturbation, is typically rare or controversial (Macdonald et al. 2014; Mángano & Buatois 2014; Buatois & Mángano 2016; Tarhan et al. 2020).

Material described from the c. 550–544 Ma Khatyspyt Formation of Siberia (Sokolov & Fedonkin 1984; Fedonkin 1988; Rogov et al. 2012, 2013a, 2013b; Cherry et al. 2022) is of critical importance for understanding the timing and nature of both behavioural innovation and metazoan evolution more broadly. Fossil material assigned to the ichnogenus *Nenoxites* Fedonkin, 1976, by Rogov et al. (2012) was interpreted by those authors as evidence for burrowing involving meniscate backfilling, on the basis of taphonomic, palaeoecological and sedimentological lines of observation. That evidence includes morphologies consistent with photobiosis (Rogov et al. 2013a) and vertical escape behaviour, the absence of branching, disturbance of primary laminations, secondary erosion of candidate meniscae by subsequent sedimentary deposits, and the presence of connective structures reminiscent of mucus-wall drains (Rogov et al. 2012). Such an interpretation would extend the ichnofossil record of bilaterians capable of producing complex backfill burrow structures (and thus their associated impact on sediments), by c. 10 myr (Mángano & Buatois 2020; Tarhan et al. 2020; Darroch et al. 2021).

The ichnological interpretation of the Khatyspyt material has been challenged by suggestions that it may instead represent the body fossil remains of tubular organisms (Brasier et al. 2013). Other researchers accept that the material may document bioturbation, but by mycetozoan amoebozoans rather than by metazoans (Gámez Vintaned & Zhuravlev 2013). Over the past two decades, similar material from Siberia, Ukraine, China, India and Namibia (e.g. Shen et al. 2007; Dong et al. 2008; Zhuravlev et al. 2009; Meyer et al. 2012; Rogov et al. 2013a, 2013b; Tarhan et al. 2014; Darroch et al. 2016; Wood et al. 2017; Zhu et al. 2017; Ivantsov 2018; Luo & Miao 2020; Liu et al. 2022; Yi et al. 2022) has been described, offering multiple points of comparison. Concurrently, meticulous study of extensive collections of the body fossil *Shaanxilithes* Xing et al., 1984, a potential index fossil for latest Ediacaran strata (e.g. Meyer et al. 2012; Chai et al. 2021), has identified multiple taphonomic modes for *Shaanxilithes* preservation (Wang et al. 2021), some of which bear strong resemblance to the Siberian *Nenoxites* material (similarities between some *Nenoxites* and *Shaanxilithes* specimens were also recognized by Meyer et al. 2012, Ivantsov 2018 and Rogov et al. 2012, while more recently *Nenoxites* and certain *Palaeopascichnus* specimens from South China have been considered to reflect taphonomic variants or closely related taxa; Luo & Miao 2020; Yi et al. 2022; although see also Liu et al. 2022).

Here we reanalyse the Khatyspyt Formation *Nenoxites* material in an attempt to discriminate between body and trace fossil interpretations. Digital reconstruction of the preserved structures from computed tomography (CT) scans permits visualization of their three-dimensional (3D) morphology. Optical microscopy and scanning electron microscopy (SEM) studies elucidate the taphonomic and diagenetic history of the material, and provide insight into its formation. Our results permit both re-evaluation of the trace fossil interpretation proposed for this material, and direct comparison of the Khatyspyt Formation material with similar, broadly coeval, body fossil material.

GEOLOGICAL SETTING

The fossiliferous Khatyspyt Formation of the late Ediacaran Khorbusuonka Group reaches 245 m in thickness and consists of alternating thin limestones and shales, finely laminated thin- to medium-bedded limestones, planar- to wavy-laminated thick-bedded limestones, and intraclastic dolomitized limestones occurring as laterally persistent channelized deposits over tens to hundreds of metres, all punctuated by thin interbeds of volcanic tuff and packages of shales. Sedimentological observations suggest deposition in a starved intraradion rift basin developed in a marine inner-ramp setting influenced by wave and current activity, with intraclastic limestones representing debris flows deposited adjacent to inferred syn-sedimentary faults (Knoll et al. 1995; Pelechaty et al. 1996; Nagovitsin et al. 2015; Kolesnikov et al. 2018).
The Khatyspyt Formation hosts a considerable diversity of macrofossil impressions of soft-bodied candidate animals (including rangeomorphs and arboreomorphs), carbonate compression fossils (mega-algae), and trace fossils (Sokolov & Fedonkin 1984; Vodanuk 1989; Fedonkin 1990; Grazhdankin et al. 2008; Nagovitsin et al. 2015; Bykov et al. 2017, 2020), in addition to organic biomarkers (Duda et al. 2016, 2020). Fossil distribution is controlled by lithofacies. The meniscate structures described herein are confined to a facies that is in close proximity to carbonate compression macrofossils (although never on the same surfaces), but is otherwise devoid of macrofossils.

The studied material was collected from finely laminated silicified and dolomitized mudstones in the uppermost part of Member 3 of the Khatyspyt Formation (Nagovitsin et al. 2015, section 0602), cropping out at the mouth of Anabyl Creek, left tributary of the Khorbusuonka River, Olenek Uplift, Republic of Sakha, Siberia, Russia (Fig. 1A). Extensive regional silicification in the uppermost beds of Member 3 is attributed to the presence of thin, devitrified volcanic tuff interbeds. A diatreme dated to 543.9 ± 0.3 Ma (the Tas-Yuryakh volcanic complex; Bowring et al. 1993) penetrates the Khatyspyt Formation as well as the overlying Turkut Formation and lowermost part of the Syhargalakh Formation, providing a minimum age constraint for the material under study (Fig. 1; Rogov et al. 2012; Nagovitsin et al. 2015). A maximum age constraint of 550 Ma is provided by a detrital zircon U–Pb isotopic age from the top of the underlying Maastakh Formation (Cherry et al. 2022).

The studied horizons are part of a 2.64-m-thick fining-upward package consisting of planar- and hummocky-stratified pelsparite, overlain by a succession of finely laminated sparite and micrite interbeds. The finely laminated limestone interbeds are characterized by erosive bases and flat tops. Erosional scourss cut down to a depth of up to 17 mm and are filled with finely laminated limestone (Fig. 1C, D). The upper part of limestone interbeds can consist of densely packed meniscate structures that occasionally become selectively silicified (Fig. 1C). An interval of 17.23 m logged in the upper part of Member 3 of the Khatyspyt Formation consists of 17 such packages of different thickness.

The studied sample is a 50-mm-thick bed originating from one of these partly silicified limestone interbeds, and was collected from a horizon 26.77 m from the base of the section (Figs 1C–E, 2). The bed has an erosive base, which cuts down to a depth of up to 11 mm into the underlying fossil-bearing stratum (best seen at left in Fig. 2A, also magnified in Rogov et al. 2012, fig. 1A–B). The scour was initially filled by finely laminated limestone that does not contain fossils (Fig. 1C; ‘dark layer’ in Fig. 2B; see also Rogov et al. 2012, fig. 1A–B). The fossil material is confined to the upper portion of the studied stratum (Fig. 2), and gives the appearance of being inverse graded, with larger elements being located towards the top of the bed. The top of the studied stratum has been scoured (Fig. 2B, also magnified in Rogov et al. 2013b, fig. 1A). In the studied sample, fossils are preserved three-dimensionally, although elsewhere in the Khatyspyt Formation similar structures can manifest as low hypo- or epirelief on the sediment surface (Rogov et al. 2012, fig. 3). The figured beds are interpreted to have been deposited in a shallow marine storm-influenced environment on a carbonate ramp (Duda et al. 2020).

MATERIAL AND METHOD

A triangular block of the fossil-bearing horizon (CAMSM X 50382.1; lateral dimensions: 6.30 cm, 5.50 cm and 5.42 cm, height: 3.10 cm) (Figs 1C, 2D) was scanned using x-ray microtomography (µCT) at the Natural History Museum in London with a Nikon Metrology HMX ST 225 instrument. X-rays were generated using a tungsten target, with an accelerating voltage of 180 kV, a current of 140 μA, and no filtration. A total of 3142 projections were collected with a 708 ms exposure, and reconstructed to a create a 33.7 μm voxel size volume. In order to explore the data, the 32-bit floating point volume was loaded in Drishti import v2.5.1 (Limaye 2012), then windowed and the histogram stretched around the grey levels of the sample. Data were exported as an 8-bit PNG stack. This stack was then imported into SPIERSedit v2.2.0 (Sutton et al. 2012). The low attenuation contrast of the scan coupled with the density of the rock resulted in beam hardening artefacts (i.e. the greyscale values for each phase were darker inside the sample). These were minimized by creating broadly circular regions of interest in the sample, and applying different linear threshold values to each. From these thresholds, a surface was exported to SPIERSview v2.2.0, and the smallest islands were removed (object, island removal, tiny). The resulting mesh was then exported and then imported into Blender v2.79 (see Garwood & Dunlop 2014) for an overview, in which mesh islands were separated for individual inspection following the methodology outlined in Parry et al. (2017). This provided an overview of the morphology. However, the low contrast, the beam hardening and the presence of diagenetically introduced crystals of different densities inside the specimens, coupled with differential compaction of individual elements, hampered attempts to identify precise fossil outlines in the µCT slice data. These factors precluded the tracing of individual chains of elements through the slab. As such, the specimens...
presented here were traced by following the trajectory of the elements in AVIZO v8 and searching for other elements in close proximity. If multiple elements were nearby (a frequent situation), the surrounding series were also traced, enabling us to manually assign elements to the correct series.

FIG. 1. Stratigraphic, geographical and geological context for the studied material. A, location of the field area in northern Siberia (Russia) (star). B, the Anabyl Creek section along the left tributary of the Khorbusuonka River (lat. 71.200625, long. 123.726222 in WGS84 datum), with the fossil-bearing strata indicated towards the top of the section (star). C–D, close-up view of two fossiliferous horizons (f) delineated by erosional surfaces (bold red lines); note that the scour at the base of the upper fossil-bearing bed has initially been filled by cross-bedded and then planar-laminated sediment (coloured in D), which is devoid of fossils. E, polished slab of the studied material (CAMSM X 50382.1). F, close-up view of E, showing the halo boundaries surrounding a series. Scale bar lengths/divisions represent 1 cm (C–E). Stratigraphy follows Nagovitsin et al. (2015).
Thin sections cut perpendicular to bedding through the Siberian material (CAMSM X 50382.2.1 to CAMSM X 50382.4.1) were carbon-coated and analysed using a Hitachi S3500-N scanning electron microscope with a silicon drift detector at the School of Earth Sciences, University of Bristol. Crystal chemistry and element maps were acquired using energy dispersive spectrometry at 15 kV, and a working distance of either 15 or 20 mm. Weight percent elemental maps were generated using standardless quantification (i.e. all count totals were normalized to 100%). The hand specimen and thin sections are accessioned in the Sedgwick Museum, University of Cambridge, UK (CAMSM). All raw files relating to μCT scans, tomographic reconstruction, and SEM are stored in the Bristol Data Repository (Psarras et al. 2023).

FIG. 2. *In situ* sedimentological context of the studied material from the Khatsypyt Formation. A, general view of the sedimemtable at the mouth of Anabyl Creek, Khorbusuonka River, Siberia; the undulating erosive base of the fossil-bearing bed is highlighted in dark brown. B, scouring of the fossil bed by overlying deposits; the fossils themselves are truncated by scours in some places; note the dark layer possessing internal lamination in the lowest millimetres of the fossil-bearing bed. C, sedimentology immediately surrounding the fossil-bearing horizon (which appears to have smaller fossil elements towards the base of the bed and larger elements towards the top). D, close-up view of the fossil-bearing horizon showing ‘series’ of pale green ‘elements’ surrounded by dark, olive-green ‘halos’; variation in the size of elements through the bed is indicated, and could be interpreted as evidence for inverse grading if the elements were originally particles deposited in the sediment; alternatively, the variation in size may reflect a progressive increase in the amount of diagenetic overgrowth of silicic material towards the top of the bed (discussed in the text). Ruler has mm and cm increments.
RESULTS

Three-dimensional reconstruction

Three-dimensional reconstruction of the Khatyspyt material from µCT data shows multiple bowl-shaped structures, here termed ‘elements’ (referred to as ‘intervening menisci’ by Rogov et al. 2012, and comparable to the ‘crescentic segments’ or ‘internal nested tubes’ of Wang et al. 2021, and ‘dishes’ of Liu et al. 2022), serially arranged in ‘series’ (i.e. the ‘strings’ in Liu et al. 2022) (Figs 3, 4). Note that the packages of sediment occurring between these bowl-shaped structures were described as ‘menisci’ by Rogov et al. (2012). Each series of elements is enclosed in a distinct cylindrical–elliptical region of sediment of slightly different colour and mineralogical composition to the surrounding substrate, here termed a ‘halo’ (Figs 1F, 2D, 3E). This halo is equivalent to that described by Rogov et al. (2012, fig. 3), who interpreted it as a diagenetic artefact of silicification, and also to halos described in the Chinese taxon Ordinilunulatus by Liu et al. (2022, fig. 7), who interpreted it as a biological structure. The width of the surrounding halo remains constant throughout a series (Fig. 3E, see also Rogov et al. 2013b, fig. 1c), but halos can be of variable clarity, with some being almost impossible to distinguish from other halos or the substrate, while others, typically surrounding large, well-defined series, have sharp boundaries (e.g. Fig. 2D).

Digital reconstruction of 55 series shows that the elements constituting individual series are consistent in shape and size (Fig. 3). Individual series have broadly consistent element length and length: width ratios (ratios range from 1 to 2; Fig. 5A), with elements from different series measuring 0.63–2.55 mm in length and 0.37–1.85 mm in width (n = 151 measured elements). Although the elements are reasonably uniform in shape (mean length: width ratio = 1.52, mode = 1.5, Fig. 5), extreme ratios (min. = 1, max. = 3.48) are observed (Fig. 5A, outlier elements). Series are not observed to branch, and do not cross-cut one another in three dimensions. Adjacent elements in a series can be in direct contact, or separated by distances of up to 0.42 mm (Fig. 4). Most digitally reconstructed specimens have a thin, thread-like connection between adjacent elements (248 of 253 observed elements), here termed a ‘bridge’ (sensu Brasier et al. 2013; referred to as a ‘connection’ in Ordinilunulatus by Liu et al. 2022), but in the Khatyspyt material this bridge is not consistently positioned with respect to the centre of the elements, and its length and width are variable even in individual series (Figs 3, 4). Importantly, when a bridge is observed, its size is considerably greater than the voxel size for the CT scans, suggesting that the absence of such structures between some elements is a genuine absence rather than an artefact of the resolution of the CT data. Individual series follow a variety of 3D trajectories at all angles to the bedding surface, including straight and sub-vertically aligned series, as well as examples that change direction by up to 180° (Fig. 3F). The maximum observed change in angle between two consecutive elements is 50°. Most individual series eventually collide with other specimens when tracked through the sample, preventing conclusive determination of whether they possess distinct terminal morphologies (see the full sample image mesh in the Data Repository). The longest measured individual series contained 31 elements. Examples of isolated elements, not in obvious association with any neighbouring series, were also observed. No obvious, consistently shaped terminal structure was observed in the studied population.

Petrology and SEM

Optical microscopy and SEM analyses confirm a largely dolomitic composition for both the sedimentary matrix and the halos. Micron-scale angular rhombs of sucrosic dolomite, often with clear compositional zoning (Fig. 6F), comprise c. 70% of the matrix, with the remainder composed offeldspars, quartz and minor pyrite grains (Fig. 6). This mineralogical composition is confirmed by elemental mapping of the sample (Fig. 7), which indicates the presence of dolomite (areas of enrichment in Ca, Mg) (Fig. S1), quartz (Si) and feldspars (Al, K). Notably, the halo shows little compositional difference to the surrounding sediment: there appears to be slightly more dolomite (Ca and Mg in the elemental maps) with respect to silica in the halo (Fig. 7), but this perception may result from differences in grain size rather than composition. In contrast, the fine-grained material comprising the bowl-shaped elements is largely silicic (Fig. 6), with occasional larger crystals of intergrown dolomite and calcite, the latter inferred to have formed during late-stage diagenesis as a void infill (e.g. Fig. 6E). Dolomite rhombs infiltrate the silicic bowl-shaped elements at their margins, producing a boundary between these elements and surrounding sediment that is diffuse rather than sharp (Fig. 6D). Silicic material compositionally identical to that in the bowl-shaped elements is present between dolomite crystals in both the halos and the surrounding sediment (Fig. 7).

DISCUSSION

Interpretation of the material examined

Petrological analysis of the Khatyspyt Formation material confirms the dolomitic composition of the matrix and the silicification of incorporated elements, as recognized
by Rogov et al. (2013b). We also recognize a late-stage void-filling crystallization event that has overprinted some of the silicic elements (Fig. 6E). Clearly the specimens have undergone a complex taphonomic history, and we concur with previous authors that diagenetic silicification is likely to be responsible for the diffuse boundaries and

Fig. 3. 3D digital reconstructions of Nenoxites specimens from the Khatyspyt Formation. A, group of 11 densely packed series of elements. B, one individual series, consisting of 10 elements. C, individual series of 12 bowl-shaped elements. D, sketch showing how the measurements of length 'L' and width 'W' were extracted from individual elements of the boxed area of series C. E, a single specimen, without (left), and with (right) its associated halo of broadly constant width. F, a series presenting an overall 180° change in direction. Scale bars denote the maximum width of individual elements (A–C, E) or halo (E).
irregular shape of many individual elements and series (e.g. Rogov et al. 2013b). An originally biomineralized structure would not be expected to possess an infill of randomly arranged micro- and meso-quartz crystals, and therefore we can discount primary silica biomineralization as an explanation for the elements. Given the propensity for dolomite to form late-stage diagenetic destructive replacement textures (as seemingly evidenced here by its overgrowth of silicic material in the matrix; Fig. 6F), and the observed incursion of dolomite crystals into the silicic elements (Fig. 6D), we infer that silicification of this material occurred early, with dolomitization of the matrix taking place at a later stage in the burial history. This inferred early silicification event is probably the result of devitrification of local tuffs in the Khatyspyt Formation, but is consistent with the association of other global occurrences of Nenoxites-like material with silica (although we note that several of those fossils also have associations with clay minerals; e.g. Dong et al. 2008; Luo & Miao 2020; Yi et al. 2022).

Morphologically, the structures are composed of concavo-convex elements arranged in stacked series, with frequent thread-like connections (Fig. 3), all enveloped in a cylindrical halo (Fig. 3E). The precise width and morphology of the halo cannot always be identified due to interaction with neighbouring series and conflation by diageneric alteration, but the width of elements in individual series is relatively consistent, while different series have a range of widths (Fig. 5A). Elements possess similar length : width ratios of 1.5 across the studied population (Fig. 5B).

Importantly, we recognize that the prominent halos surrounding the elements (most clearly observed in the studied hand specimen as a darker green rim around the elements) possess the same mineralogy as the surrounding sedimentary matrix (Fig. 7). If halos reflect a biological or
biologically induced feature, they probably had a distinct original composition relative to the elements they encompass, in order to explain their differential preservation (with the elements having been entirely silicified and then largely unaffected by later dolomitization). True burrow meniscae would be assumed to comprise packages of sediment (potentially of the same, or different, composition to the surrounding matrix), and the organic-rich sediment between such true meniscae could feasibly undergo preferential silicification (Butts 2014). Alternatively in a body fossil model, the halos and elements may originally have been constructed of different biological

\[\text{FIG. 6.} \quad \text{SEM and light microscopy of the Khatyspyt Formation material in thin section CAMSM X 50382.2.1. A, SEM backscatter; B, optical microscopy plane-polarized; C, optical microscopy cross-polarized views of two series of elements. D, close up SEM backscatter image of the diffuse, irregular margin of an element (left), showing the presence of isolated rhombic dolomite crystals (light grey) in the element. E, cross-polarized optical microscopy image of a series with a large, mineralized vug of calcite and dolomite replacing some of the elements (centre). F, zoning in dolomite crystals in the matrix, which seem to have overgrown or truncated pre-existing calcite and silicate minerals. Scale bars represent: 1 mm (B, C); 0.5 mm (E); 0.01 mm (F).}\]
materials, or they could result from decay or diagenetic processes during lithification. Early diagenetic microcrystalline silicification of the elements, removing any available pore space inside them, is our favoured explanation for the observed mineralogical distinction, but it is not exclusive to a trace fossil interpretation. It is also possible that the relative depletion of silica in the halos results from the dissolution and removal of pre-existing siliceous material from those areas during silicification of the elements (promoted by organic matter in the elements), although it is difficult to distinguish between these possibilities from the available data. In all scenarios, silicification of the elements would have been followed by dolomitization of both the sedimentary matrix and the halos (Fig. S2).

The Khatyspyt material can be compared with Upper Cretaceous cherts of the Ekofisk Formation ('Fabric II' of Blinkenberg et al. 2021), which formed via progressive silica replacement interspersed with calcite recrystallization (Blinkenberg et al. 2021). Such cycles of silica dissolution and recrystallization could have filled voids between original calcite crystals and created voids inside individual elements, which could then be filled by later precipitation of calcite to produce the observed carbonate fabrics. In this model, either silicification or recrystallization could have produced the diffuse element boundaries we observe, as
well as the irregular shapes of the elements (Fig. 5), the inconsistent appearance and placement of bridging structures, and the variable clarity of the halos (Fig. 2D). In sum, our taphonomic data suggest that the bowl-shaped elements and halos had different original compositions, but cannot in isolation distinguish between body and trace fossil explanations for the Khatyspyt material.

From a sedimentological perspective, the most parsimonious explanation for the sedimentological context of the fossil-bearing horizons is that high energy flows created a series of erosive scours, which have first been filled by cross-beded fine sediment, before being draped by planar laminae (Fig. 2). In individual beds, this is all likely to have happened during one event, with cross-beds preferentially filling the scours as flow velocity decreased, before being draped by planar laminae once the scours were filled. The fossil structures largely lie in and above the planar-laminated part of the beds, although they can also be found (albeit rarely) in the uppermost cross-laminae (e.g. Rogov et al. 2012), implying that they were either present and deposited during the later stages of the flow (if they are particles, i.e. body fossils), or were emplaced after sediment deposition had ceased, and cut down through the sedimentary laminae at a later date (if they are trace fossils).

It is possible that the apparent inverse grading results from a progressive increase in the amount of diagenetic overgrowth of silicic material towards the top of the fossil-bearing unit, but it is difficult to determine whether this was the case from the available data (Fig. S2). Assuming that the increased size of elements towards the top of the bed is an original signal, increased nutrient or oxygen availability for trace-making organisms offers a reasonable explanation for the presence of larger burrows closer to the sediment–water interface, in which case the assemblage could be interpreted as a post-turbidite or post-tempestite ichnocoenosis (Leszczyński & Seilacher 1991). However, apparent grading is more readily explained by the sorting of discrete objects in a rapidly deposited sedimentary accumulation.

The observation that the fossil material lies above laminated fine-grained sediment would appear to be at odds with an interpretation of the fossils representing a lag deposit, given that if they were behaving as sedimentary particles settling in a waning flow, they might be expected to exhibit normal grading and to lie at the base of the deposit, following the erosive base as in a traction carpet layer in a granular flow (e.g. Lowe 1982). However, an alternative explanation is that the series and elements behaved as buoyant particles in a clast-rich debris flow. In this scenario, larger clasts would be expected to be entrained towards the top of the flow, resulting in reverse grading of any subsequent deposit. Such an explanation is consistent with the repetition of this sedimentary sequence in the local succession (i.e. successive debris events), and with the random orientations of individual series in the beds (given that each individual series would have been chaotically transported and then rapidly deposited as flow velocity diminished). Observation of rare isolated elements, both in the Khatyspyt Formation and elsewhere, is explained by the series consisting of transportable objects that could disarticulate into individual elements, and is difficult to explain in a meniscate burrow interpretive framework. A debris interpretation is also consistent with the general storm- and wave-influenced carbonate ramp depositional environment evidenced by the surrounding beds, and previous interpretation of debris flows in the stratigraphic succession (summarized in the Geological Settings section above). Inverse grading might be expected to involve an upward increase in both clast size and volumetric percentage, which also appears to be the case here (Fig. 1E).

Crucially, if the bed was burrowed or bioturbated, the depth of bioturbation would be expected to be consistent along the length of the bed (i.e. being controlled by the redox gradient in the sediment). Instead, the elements in the Khatyspyt Formation material appear to follow the pre-existing topography of the fine-grained planar laminae at the base of the flow (e.g. Fig. 1C, D). This is inconsistent with expected burrowing behaviour but can be explained by the deposition of particles entrained in a debris flow.

Rogov et al. (2012, 2013b) suggested that scouring of the upper surface of the bed, including scours that cut across individual elements in the bed (Fig. 2B), is more compatible with a trace fossil origin for the Khatyspyt material. The observation of scourd elements logically rules out the fossils being originally mineralized (because the scouring currents would not be expected to be strong enough to erode mineralized elements in a soft sediment). Indeed, the occurrence of Nenuxites specimens elsewhere as 2D compression fossils (e.g. Kolesnikov et al. 2018) provides strong evidence against them having been robustly mineralized original structures. However, an originally soft, sediment filled, or semi-lithified structure could feasibly have been torn or deformed by currents, and there are multiple examples of late Ediacaran organic-walled tubular body fossils that could potentially have behaved in the way we observe if subjected to debris flows. There is uncertainty surrounding both the taphonomic behaviour of invertebrates in debris flows, and the anatomy of these Ediacaran candidate body fossils, but experimental work with modern polychaetes has demonstrated that those soft-bodied organisms can be transported for tens of kilometres in sedimentary density flows without appreciable damage (Bath Enright et al. 2017). Assemblages of tubular body fossils from other late Ediacaran deposits (e.g. mineralized Cloudina specimens in
the Nama Group of Namibia) can exhibit comparable densities and abundances within individual event beds (Mehra & Maloof 2018), demonstrating that low-diversity accumulations of body fossils are common in comparable late Ediacaran palaeoenvironments. On the balance of available evidence, we consider the sedimentological context of the Khatyspyt Formation _Nenoxites_ to be most consistent with a body fossil interpretation for the specimens.

Insights from other global fossil assemblages

Rogov _et al._ (2012) recognized the morphological similarity between Khatyspyt Formation _Nenoxites_ material and the late Ediacaran taxa _Shaanxilithes ningqiangensis, Helanoichnus helanensis_ and _Palaeopascichnus minimus_. _P. meniscatus_ and _P. jiumenensis_ from China (e.g. Shen _et al._ 2007; Dong _et al._ 2008; note that the latter taxon, which can be an order of magnitude smaller than the Khatyspyt material, was discussed as a species of _Nenoxites_ by Yi _et al._ 2022 and then formally synonymized within _Ordinilunulatus jiumenensis_ by Liu _et al._ 2022). Considerable research on those taxa confirms that they reflect body fossils of tubular organisms with an annulated body enclosed in an external tube (Luo & Miao 2020; Wang _et al._ 2021; Liu _et al._ 2022; Yi _et al._ 2022).

Comparisons between _Nenoxites_ and tubular body fossils similar to _Shaanxilithes_ have precedent (e.g. Hua _et al._ 2004; Shen _et al._ 2007; Cai _et al._ 2011; Meyer _et al._ 2012; Tarhan _et al._ 2014; Ivantsov 2018; Luo & Miao 2020; Wang _et al._ 2021; Yi _et al._ 2022), with some of those authors considering _Nenoxites_ to be a tubular body fossil, potentially of protistan grade (Luo & Miao 2020). Such comparisons have been based on both morphological and taphonomic evidence, with some authors noting that multiple taxa may actually reflect taphonomic variants of _Nenoxites curvus_ (e.g. Ivantsov 2018). Taxa such as _Helanoichnus, Parahorodyskia_, and _Ordinilunulata_ from the Liu-chapo Formation of China (found in association with _Nenoxites_ and the morphologically similar taxon _Ordinilunulatus_) can possess similar halos (e.g. Dong _et al._ 2008; Liu _et al._ 2022; Yi _et al._ 2022). Those taxa plus _Shaanxilithes_ (note that _Helanoichnus_ has been considered a taphonomic variant of _Shaanxilithes ningqiangensis_; Wang _et al._ 2021) possess millimetric internal segments or annulation, sometimes with bridges of material between them (e.g. Luo & Miao 2020; Liu _et al._ 2022; Yi _et al._ 2022). Like _Nenoxites_, _Helanoichnus, Longbiziulla_ and _Shaanxilithes_ can also be preserved either as 2D compressions or 3D silicifications (Chai _et al._ 2021; Yi _et al._ 2022). Some Liu-chapo Formation _Nenoxites_ taphomorphs show sudden changes in direction (Luo & Miao 2020) and, like the Khatyspyt material, show no evidence for cross-cutting of specimens. _Nenoxites_ has been described from strata older than 557.3 ± 0.6 Ma in the Lamtsa Formation of Russia (Grazhdankin 2014; Yang _et al._ 2021) and in the Liu-chapo Formation of South China, which lies close to the Ediacaran–Cambrian boundary (540.7 ± 3.8 (±6.6) Ma; Chen & Feng 2019). All globally reported material is of late Ediacaran age and occurs predominantly in silicified deposits, including limestones, silstones and mudstones (Table 1; Yi _et al._ 2022). This age range corresponds with that of the known range of _Helanoichnus, Longbiziulla, Ordinilunulatus_ and _Shaanxilithes_ (Chai _et al._ 2021; Liu _et al._ 2022; Yi _et al._ 2022), while the preservational style hints at a favourable taphonomic window for preservation of such organisms in rock units that have undergone silification.

Specimens of _Shaanxilithes_ from the late Ediacaran of North China have been interpreted as nested internal tubes encased in flexible, annulated external tubes (Wang _et al._ 2021), on the basis of material preserved as compressed 3D structures. Displaced segments in individual series in that material were explained as resulting from compaction or decomposition/partial decay of their surrounding (soft tissue) external tube (Wang _et al._ 2021, fig. 7, red arrows). The 3D material from the Khatyspyt Formation does not show any original cavities inside the elements. However, a gross morphology consisting of a nested, robust internal tube inside a more flexible, potentially unmineralized outer tube (see Wang _et al._ 2021, figs 5–7, 9, 11) could be consistent with the material we describe. In such a scenario, the halo might define the position of the outer tube, while individual elements may reflect the remains of internal body structure. Alternatively, our petrological data indicate that the halos could reflect diagenetic artefacts resulting from the transport of silica to the elements.

The Khatyspyt Formation material can be compared with smaller tubular branching fossils from China showing similar internal segmented 3D morphologies (Sun _et al._ 2019), but the studied material here is non-branching. Yi _et al._ (2022) discussed the similarity of _Nenoxites_ and _Palaeopascichnus_ specimens from the Liu-chapo Formation (see also Luo & Miao 2020), and propose synonymization of _P. minimus, P. meniscatus_ and _P. jiumenensis_ within _Nenoxites_. Those authors also erected the new species _Nenoxites irregularis_ and _Nenoxites jishouensis_ (Yi _et al._ 2022). _Palaeopascichnus jiumenensis_ and _N. jishouensis_ have since been synonymized in the new taxon _Ordinilunulatus_ (Liu _et al._ 2022), which those authors distinguish from _Nenoxites curvus_ by their possession of fewer elements, more consistent placement of bridges, and the frequent presence of a terminal spherical structure (Liu _et al._ 2022). However, in all other respects...
the morphology of *Ordinilunulatus* is similar to the Khatyspyt material, and ontogenetic or taphonomic factors could be responsible for the stated differences. Similarly other proposed diagnostic characteristics of those *Nenoxites* species (namely size, mode of preservation, degree of curvature, spacing between elements, and

<table>
<thead>
<tr>
<th>Country</th>
<th>Formation</th>
<th>References</th>
<th>Lithology of host unit</th>
<th>Table 1. Global distribution and stratigraphic occurrence of previously reported Shaanxilithes/Nenoxites-like specimens.</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>Zhoujieshan</td>
<td>Wang et al. (1980)</td>
<td>Cherts, siltstones and sandstones</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shen et al. (2007) (fig. 4:7–8); Wang et al. (2021)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pang et al. (2021) (fig. S3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zhengmuguan</td>
<td>*Yang & Zheng (1985) (pl.1, fig. 8)</td>
<td>Cherts, siltstones and sandstones</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Li et al. (1997) (pl. 5, fig. 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shen et al. (2007) (fig. 4:1–6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yuhucun</td>
<td>Luo et al. (1982)</td>
<td>Siltstones</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Luo et al. (1988)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Luo et al. (1991) (no figured specimen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zhang et al. (2015) (figs 3–5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tang et al. (2015) (figs 4–5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gu et al. (2018) (no figured specimen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dengying</td>
<td>*Chen et al. (1975) (pl. 1, figs 8–9)</td>
<td>Limestones, siltstones and mudstones</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Xing et al. (1984) (pl. 8, figs 19–20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Zhang (1986) (pl. 4, figs 11, 13b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weber et al. (2007) (fig. 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cai et al. (2011) (fig. 1G–I)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meyer et al. (2012) (figs 2, 4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zhou et al. (2019) (fig. 3C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>An et al. (2020) (fig. 1D–F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chai et al. (2021) (figs 3–4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fang et al. (2021) (figs 4–6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taozichong</td>
<td>Hua et al. (2004) (figs 1–6)</td>
<td>Siliceous dolostones at the bottom of Taozichong Formation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tuerkeng</td>
<td>Wang et al. (2021) (figs 3–9)</td>
<td>Siltstones</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Liuchapo</td>
<td>Dong et al. (2008) (figs 7, 10)</td>
<td>Cherts, siltstones and sandstones</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wang et al. (2012) (fig. 4H)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chen et al. (2015) (no figured specimen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chen & Feng (2019) (fig. 2E–F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ye et al. (2020) (fig. 3A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yi et al. (2022) (figs 3F, 4, 5A–E, 12G–L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liu et al. (2022) (figs 7, 11C–D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Laobao</td>
<td>Dong et al. (2015) (fig. 3C)</td>
<td>Cherts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piyuancun</td>
<td>Dong et al. (2012) (fig. 4A–D)</td>
<td>Siliceous siltstones and shales</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chen & Feng (2019) (no figured specimen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td>Khatyspyt</td>
<td>Zhuravlev et al. (2009) (fig. 2); Rogov et al. (2012) (figs 2–3), (2013a) (fig. 1A–B), (2013b) (fig. 1)</td>
<td>Laminated silicified and dolomitized mudstones</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verkhovka</td>
<td>Fedonkin (1976)</td>
<td>Alternating siltstone and shale, with finely laminated sandstone interbeds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yudoma region</td>
<td>Zhuravlev et al. (2009) (fig. 2)</td>
<td>Calcareous mudstones</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ivanstov (2017) (fig. 2D), (2018) (pl. 1, figs 5–7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wood et al. (2017) (fig. 2A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ukraine</td>
<td>Yaryshev</td>
<td>Rogov et al. (2013a) (fig. 1C–D)</td>
<td>Tuffaceous silicified mudstones</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>Krol and Tal Groups</td>
<td>Tarhan et al. (2014) (fig. 3A–J, 4A–E, H–J)</td>
<td>Siltstones and argillaceous dolostones</td>
<td></td>
</tr>
<tr>
<td>Namibia</td>
<td>Nama Group</td>
<td>Darroch et al. (2016) (figs 2C–D, 6)</td>
<td>Slabby siltstones and fine-grained sandstones</td>
<td></td>
</tr>
</tbody>
</table>

*Studies that reference material that has not been directly observed by us (either via physical study or observation from photographs).
the irregular nature of element margins) are not considered here to be taxonomically informative; they all have the potential to result from taphonomic processes in the Khatyspyt Formation, and the prevalence of diagenetic silicification and dolomitization at many Nenoxites localities worldwide raises concerns that such characters are not original. Given that all variants can commonly be found in the same deposits, we consider it more likely that their different appearance results from taphonomic alteration of a single original morphotype.

There are taxonomic complexities among Ediacaran tubular body fossils that remain to be resolved. The type material of the type species of Shaanxilithes (S. ningqiangensis Xing et al., 1984) is represented by straight ribbon-like structures c. 6–8 mm wide with sharp boundaries and no visible meniscate sub-structure. That type material as originally defined is therefore dissimilar from Nenoxites curvus. Conversely, a second species, Shaanxilithes erodus Zhang, 1986, does closely resemble Nenoxites curvus. There is therefore an argument for synonymization of Shaanxilithes erodus with Nenoxites curvus, but not the type species Shaanxilithes ningqiangensis (and thus the genus Shaanxilithes), which seems to represent a distinct taxon. Hua et al. (2004) further complicated the issue by expanding the diagnosis of Shaanxilithes ningqiangensis and including sinusoidally curved fossils with a meniscate sub-structure that resemble Nenoxites curvus. We refrain from formal synonymy at this stage because of the heterogeneous nature of the assemblage currently encompassed by the concept of Shaanxilithes, but we note that Shaanxilithes as a genus is in need of a thorough revision, and the Khatyspyt Nenoxites bear strong similarities to some of the material currently assigned to it. Nevertheless, the Khatyspyt material provides support for the candidacy of the Shaanxilithes-type suite of fossils as late Ediacaran (c. 558–539 Ma) index fossils (Chai et al. 2021; Liu et al. 2022).

Affinity

The main challenges to phylogenetic placement of late Ediacaran macrofossils include the uncertainty surrounding the mechanisms by which soft body parts of early animals were preserved, and the difficulty in identifying synapomorphies shared with extant taxa (Cunningham et al. 2017). The type species of Shaanxilithes (S. ningqiangensis) was originally described as a trace fossil (Xing et al. 1984), but material assigned to the genus has since been considered as being derived from an alga (Hua et al. 2004), a pogonophoran (Chen et al. 1975), a foraminifera-like protist (Luo & Miao 2020) or a metazoan of uncertain phylogenetic position (Bengtson & Zhao 1992; Shen et al. 2007; Meyer et al. 2012; Tarhan et al. 2014; Zhang et al. 2015). Wang et al. (2021) suggested that Shaanxilithes is closely related to cloudinids, which are conventionally interpreted as eumetazoans (e.g. Vinn & Zatoń 2012; Schiffbauer et al. 2020; Yang et al. 2020; Shore & Wood 2021), under the assumption that Shaanxilithes has an internal tubular structure composed of nested funnels inside a flexible external sheath. The Khatyspyt Nenoxites, and Shaanxilithes more generally, may exhibit evidence for histological differentiation into what can be interpreted as distinct tissue layers (Wang et al. 2021, fig. 11). Morphologically similar features are achieved by multicellular cyanobacteria, with a mucus sheath enveloping the component cells. However, taphonomy experiments indicate a preservational pathway for multicellular cyanobacteria that contrasts with that seen in Nenoxites and Shaanxilithes, with the cells degrading rapidly, leaving behind a flaccid sheath (Bartley 1996; Cunningham et al. 2012; Manning-Berg et al. 2022). Furthermore, the geometry of the compartments and their interconnection is incompatible with a cyanobacterial interpretation. Although eukaryotes are diverse, there are a limited number of multicellular lineages and few of these show histological differentiation. Slime mould fruiting bodies have been interpreted to exhibit epithelia (Dickinson et al. 2011, 2012), but their organization is quite distinct from Nenoxites. Otherwise, red algae can achieve relatively complex histological differentiation (Dixon 1973; Lobban & Wynne 1981; Cole & Sheath 1990), but there is no evidence that they undergo differential taphonomy (e.g. Xiao et al. 2004) and the internal compartments in Nenoxites and Shaanxilithes are again difficult to rationalize with a rhodophyte interpretation. Furthermore, the red and green algal models are not compatible with evidence that these body fossils comprise a coquina. This leaves metazoans as the only really credible interpretative model. Depending on whether sponges or cnenophores are accepted as the sister-lineage to all other animals (the sponge-sister topology would lead to the inference of epithelial differentiation being a derived trait; e.g. Nielsen 2019), there remains the possibility that Shaanxilithes is best interpreted as a total group eumetazoan.

CONCLUSION

Reassessment of fossils from the late Ediacaran Khatyspyt Formation of Siberia suggests that material originally described by Rogov et al. (2012) as trace fossils instead reflects a densely packed body fossil coquina of transported, Shaanxilithes-like flexible, non-mineralized tubular organisms. Our observations from 3D reconstruction, sedimentology and petrological analysis confirm that the Khatyspyt Formation material is more consistent with a
body fossil origin for Nenoxites. The presence of isolated elements; the lack of cross-cutting specimens; the erosive truncation of specimens by beds above; a lack of branching; reverse grading; mineralogically distinct halos; variable shape; sharp directional changes; and the variable presence of bridge structures are all, in combination, more consistent with a body fossil interpretation (Luo & Miao 2020; Chai 2021; Liu et al. 2022; Yi et al. 2022). These observations supplement previously made arguments against an ichnological origin for Khatyspyt Nenoxites (Brasier et al. 2013; Gámez Vintaned & Zhuravlev 2013) including the presence of connections between the proposed ‘menisci’ and the inconsistent morphology and size of the elements, and emphasize the similarity of Nenoxites material to Shaanxilithes-type body fossil material from South China. The taxonomy of such specimens is in need of considerable revision in light of these and other recent discussions (e.g. Luo & Miao 2020; Chai 2021; Wang et al. 2021; Liu et al. 2022; Yi et al. 2022).

The body fossil interpretation of Khatyspyt Nenoxites shifts the origin of sediment-penetrative burrowing and bioturbation (most probably indicative of bilaterian animals) closer to the Ediacaran–Cambrian boundary. The current oldest examples of sediment-penetrative burrows and patches of bioturbation now occur in offshore marine environments in the latest Ediacaran Period (e.g. Mángano & Buatois 2020; Darroch et al. 2021), with bioturbation not reaching substantial intensities until Cambrian Age 2 (Mángano & Buatois 2020). Our results also expand the range of taphonomic variability exhibited by tubular organisms that are candidates for latest Ediacaran index fossils. Finally, Shaanxilithes-type body fossils are likely to reflect an addition to the diversity of candidate metazoans in the late Ediacaran.

Acknowledgements. We thank B. Buse, T. Davies and S. Kearns for technical support, M. Tucker for discussion, and S. Jensen, R. Wood and A. Penny for providing Cloudina specimens for comparative analysis. We appreciate the assistance of Z. Chen for translating sections of Chinese-language publications. Stratigraphic, sedimentological and palaeoecological studies of the Khatyspyt Formation were supported by the Russian Science Foundation (grant 20-67-46028 to DVG). We thank the two anonymous reviewers and James D. Schiffbauer for greatly improving the text. Analyses were conducted by CP in partial fulfilment of the MSc Palaeobiology at the University of Bristol, and supported by NERC (NE/L011409/1 to AGL and NE/P013678/1 to AGL and PCJD, part of the Biosphere Evolution, Transitions and Resilience (BETR) programme, co-funded by the Natural Science Foundation of China (NSFC)). PCJD was also funded by a Leverhulme Trust Research Fellowship (RF-2022-167). LAP was supported by an early career fellowship from St Edmund Hall, Oxford and a NERC Independent Research Fellowship (grant no. NE/W007878/1). DVG and VIR were supported by Government Contract FWZ-2022-0002 (Fundamental Scientific Research Programme of the Russian Federation).

Author contributions. Conceptualization: AG Liu (AGL); Data Curation: PCJ Donoghue (PCJD), RJ Garwood (RJG), LA Parry (LAP), AGL; Formal Analysis: Christos Psarras (CP), PCJD, AGL; Funding Acquisition: AGL; Investigation: CP, DV Grazhdankin (DVG); Methodology: CP; Project Administration: CP, AGL; Resources: DVG, VI Rogov (VIR), AGL; Software: CP, RJG, LAP; Supervision: PCJD, DVG, AGL; Validation: CP; Visualization: CP, RJG, LAP, AGL; Writing – Original Draft Preparation: CP; Writing – Review & Editing: PCJD, RJG, DVG, LAP, VIR, AGL.

DATA ARCHIVING STATEMENT

Data for this study (including the CT datasets and a 3D model) are available in the Bristol Data Repository: https://doi.org/10.5523/bris.13jspoe3ih1wl2bx94tc6x6uf7

Editor. Imran Rahman

SUPPORTING INFORMATION

Additional Supporting Information can be found online (https://doi.org/10.1002/spp2.1531): Figure S1. SEM elemental maps and spectrum showing the margin of an element and the surrounding sedimentary matrix. Figure S2. Annotated photomosaic in plane polarized transmitted light showing thin section CAMSM X 50382.1, and the variation in appearance and mineralogy of the Khatyspyt Nenoxites fossil material through the studied bed.

REFERENCES

GEHLING, J. G. and DROSER, M. L. 2018. Ediacaran scavenging as a prelude to predation. Emerging Topics in Life Sciences, 2, 213–222.

