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Abstract: To understand patterns and processes of the

diversification of life, we require an accurate understanding

of taxon interrelationships. Recent studies have suggested

that analyses of morphological character data using the Baye-

sian and maximum likelihood Mk model provide phyloge-

nies of higher accuracy compared to parsimony methods.

This has proved controversial, particularly studies simulating

morphology-data under Markov models that assume shared

branch lengths for characters, as it is claimed this leads to

bias favouring the Bayesian or maximum likelihood Mk

model over parsimony models which do not explicitly make

this assumption. We avoid these potential issues by employ-

ing a simulation protocol in which character states are ran-

domly assigned to tips, but datasets are constrained to an

empirically realistic distribution of homoplasy as measured

by the consistency index. Datasets were analysed with equal

weights and implied weights parsimony, and the maximum

likelihood and Bayesian Mk model. We find that consistent

(low homoplasy) datasets render method choice largely irrel-

evant, as all methods perform well with high consistency

(low homoplasy) datasets, but the largest discrepancies in

accuracy occur with low consistency datasets (high homo-

plasy). In such cases, the Bayesian Mk model is significantly

more accurate than alternative models and implied weights

parsimony never significantly outperforms the Bayesian Mk

model. When poorly supported branches are collapsed, the

Bayesian Mk model recovers trees with higher resolution

compared to other methods. As it is not possible to assess

homoplasy independently of a tree estimate, the Bayesian

Mk model emerges as the most reliable approach for

categorical morphological analyses.

Key words: phylogenetics, parsimony, likelihood, Bayesian,

morphology, simulation.

MORPHOLOGY is integral to restoring fossil species to their

rightful place among their living relatives within the tree

of life, which is prerequisite to inferring their evolutionary

significance. It is tempting to conclude that the hegemony

of parsimony is the consequence of an absence of compet-

ing phylogenetic methods, yet parsimony methods have

undergone modest diversification (Goloboff 1997) and a

simple Markov model of character change has been avail-

able for more than a decade (Lewis 2001). Rather, it is

perhaps the development and enthusiastic adoption of

phylogenetic comparative methods by palaeontologists

which has led to renewed interest in the relative perfor-

mance of morphology-based phylogenetic methods.

Indeed, it has become conventional to undertake parallel

analyses of morphological datasets using the gamut of

phylogenetic methods (e.g. O’Leary et al. 2013; Parry et al.

2016), but it is not possible to determine which method

yields the most accurate estimate when the true phylogeny

is unknown. Hence, a number of studies have resorted to

simulations, testing between competing phylogenetic

methods based on morphology-like datasets generated*These authors contributed equally to the manuscript.
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from known phylogenies (Wright & Hillis 2014; Congreve

& Lamsdell 2016; O’Reilly et al. 2016, 2017; Brown et al.

2017; Puttick et al. 2017a, b; Goloboff et al. 2017). A

number of these studies have relied on continuous time

Markov models to simulate morphology-like data (Wright

& Hillis 2014; O’Reilly et al. 2016, 2017; Brown et al.

2017; Puttick et al. 2017a, b) and, while some have

attempted to generate data that violate a number of the

assumptions of the Mk model used in statistical phyloge-

netic methods (Brown et al. 2017), it has been argued that

they remain biased against parsimony methods (Goloboff

et al. 2017, 2018). Specifically, Goloboff et al. (2017, 2018)

argued that the framework employed in previous simula-

tions stretches and compresses all the branches of a tree by

the same factor when altering the underlying rate at which

character state changes occur in individual characters.

Goloboff et al. (2017, 2018) stated this approach to simu-

lation has given an advantage to maximum likelihood and

Bayesian analyses using the Mk model, which make this

assumption about character evolution, over parsimony-

based methods in these simulation-based benchmarking

analyses of phylogenetic methods.

Here, we address concerns with previous simulation

approaches, using a protocol for generating approximately

random data on a known tree, and establishing the

empirical realism of simulated data by ensuring that they

meet the expectations of real morphological datasets,

based on an analysis of the distribution of character con-

sistency in empirical data. As such, the ensuing simulated

datasets violate the assumptions of probabilistic evolu-

tionary models and, if anything, are likely to favour parsi-

mony-based methods, including equal weights and

implied weights parsimony due to the implicit assump-

tions of these approaches (Tuffley & Steel 1997). In par-

ticular, our simulation protocol generates datasets in

which all character state changes are observed and there

is no assumption of equality or proportionality in the

branch lengths among different characters. The results of

our analyses follow previous studies in demonstrating that

the accuracy and precision of all phylogenetic methods

increase with the scale of the available data. The Bayesian

implementation of the Mk model performs best in the

analysis of datasets exhibiting very high levels of homo-

plasy, reaching significantly higher levels of accuracy. In

contrast, at levels of homoplasy in which implied weights

achieves higher accuracy, there is only a minimal

(nonsignificant) improvement compared to the other

methods. Since the consistency of characters and datasets

is never known in isolation from the generating tree, we

conclude that the Bayesian implementation of the Mk

model should be preferred for the phylogenetic analysis

of empirical categorical morphological data.

METHOD

With few exceptions (e.g. experimental viral strains: Hillis

et al. 1992; Cunningham et al. 1998) no phylogeny esti-

mated from empirical data can be demonstrated to repre-

sent the true relationships of its constituent taxa. Thus, any

meaningful test of phylogenetic method efficacy requires a

known tree upon which data are simulated. However, in

contrast to molecular models of evolution, there is no uni-

fying empirical or theoretical model to describe the process

by which changes in morphological character states accu-

mulate through time or between lineages. Previous

approaches to simulating morphological data have prag-

matically co-opted models of molecular evolution to pro-

duce approximately realistic datasets (Wright & Hillis 2014;

O’Reilly et al. 2016, 2017; Puttick et al. 2017a), but this

approach faces two main criticisms. First, if we do not

understand how morphological cladistic data are expected

to evolve, it is impossible to apply a model to simulate real-

istic data (Goloboff et al. 2017, 2018). Second, data simu-

lated in a framework where characters share branch lengths

or proportional branch lengths under a model of between

character rate heterogeneity (Yang 1994) are biased in

favour of an inference framework that explicitly makes the

same assumption (e.g. maximum likelihood and Bayesian

implementations of the Mk model) over a nonprobabilistic

framework where these assumptions are not made (e.g.

equal weights or implied weights parsimony) (Goloboff

et al. 2017, 2018).

We cannot address the first criticism since, if we had

an accurate model of morphological evolution, there

would be no debate; it could be implemented in phylo-

genetic analysis. In the absence of a realistic model of

morphological evolution, we attend to the second criti-

cism employing a procedure that generates datasets with

a realistic distribution of homoplasy across multiple sim-

ulated matrices but does not require the assumption of

shared branch lengths among characters. In this

F IG . 1 . Schematic of workflow followed in simulating and analysing the data. A, variance in the consistency index (CI) of characters

was assayed based on a large compilation of empirical datasets. Data were simulated on two strictly bifurcating trees, one symmetrical

and another maximally asymmetrical (B), characters were randomly asserted to tips (C), with the ensuing characters allocated to ten

bins according to their CI. Matrices were assembled by drawing characters from these ten bins until the desired matrix size (100, 350,

1000 characters) and CI was achieved (D). The matrices were then analysed using equal weights and implied weights parsimony in

TNT, under the maximum likelihood implementation of the Mk model in IQ-Tree, and using Bayesian implementation of the Mk

model in MrBayes (E). Colour online.
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simulation framework (Fig. 1), we generated data on

two trees comprised of 32 tips: (1) fully symmetrical;

and (2) maximally asymmetrical. Tips of the known

trees were randomly assigned character states. Tip states

were designated using a procedure that considered the

topology only with no branch lengths or continuous

time model.

Characters were assigned to the tree by first selecting if

a character was homologous (CI = 1) or homoplastic

(0 < CI < 1). The probability of a character being homol-

ogous or homoplastic was informed by a survey of empir-

ical data, and the overall proportion of homologous:

homoplastic characters in each matrix varied in each of

the ten consistency index (CI) bins (Fig. 1). If a character

was selected as homologous, a monophyletic group was

selected at random and all its tips were given a shared

unique character. If a character was selected to be homo-

plastic, characters were assigned to tips that did not form

a monophyletic group. All internal nodes and tips were

equally likely to be sampled in the simulation (apart from

the root node), and the selection was memory-less so the

same node(s) or tip(s) could be selected multiple times.

This process was repeated until (1) the set number of

characters was simulated, and (2) the matrix-wide CI

value fell within the desired bin. All simulated characters

were variable.

The simulation procedure used here with the random

assortments of character state data ensures that no simu-

lating proportional branch lengths (measured as the

expected number of changes per character) are incorpo-

rated. We do not consider this to be a realistic model of

morphological evolution; it was designed as a procedure

for simulating morphology-like datasets that is indepen-

dent of the Markov models used to estimate tree topolo-

gies and, therefore, favours neither likelihood-based nor

parsimony methods. The simulation procedure yields

empirically realistic datasets, as assayed by the distribu-

tion of character consistency exhibited by the generated

datasets. Importantly, the procedure does not impose

equal or proportional branch lengths, describing evolu-

tionary distances between taxa, among characters, nor

does it allow for unobserved changes; both features of

previous model-based simulations. As such, the procedure

does not favour model-based phylogenetic methods and,

indeed, diminishes their benefits, such as in accounting

for unobserved changes.

For each character in the simulated datasets, character

states were assigned to leaves following the procedure

described above. However, a nonrandom filtering strategy

was then applied to ensure that the datasets used in our

analyses matched the characteristics observed in empirical

datasets. Specifically, we only retained datasets that

matched the levels of character congruence exhibited by

real datasets as measured using the consistency index

(CI), a scaled (0–1) measure of the congruence of a char-

acter to a tree (Kluge & Farris 1969). CI can be measured

character-by-character or averaged over all the characters

of a matrix; both of these measures are used in our simu-

lation procedure. Here, we use a framework of 10 bins of

CI (0–1 increasing in increments of 0.1). Overall, we sim-

ulated datasets that possessed whole-matrix CI values

(based on the true tree) that fell into each of those bins,

respectively (100 simulations per bin). For each of these

datasets, the per-character CI values were based upon

empirical estimates of per-character CIs in each of the 10

bins.

Empirical estimates of per-character CI were measured

using 1544 empirical datasets spanning all kingdoms of

life (Wright et al. 2016). For each dataset, the CI of each

character was calculated using a single most parsimonious

tree estimated from the empirical data. For each matrix,

we calculated the overall proportion of characters that fall

into each of the 10 CI bins (Fig. 2). We then pooled the

distributions of the proportion of characters that fall into

each CI bin from all the empirical datasets to get a global

distribution of the proportion of characters that fall into

each CI bin. These distributions were then used as a tar-

get distribution to be approximated when simulating

data. For example, if across all empirical datasets 40–50%
of characters possess a CI value between 0.5 and 0.6, we

constrain the simulations such that 40–50% of per-char-

acter CI values for the resulting simulated data fell within

bin 0.5–0.6.
Using these per-matrix constraints of CI values, we

simulated 100 datasets that possessed per-matrix CI

values within each of the 10 bins, resulting in 1000

simulated matrices. Two unique cases of this general

simulation procedure were produced, with matrices con-

sisting of either exclusively binary [0, 1] or a mixture of

binary and multistate characters with a maximum of four

states: [0, 1, 2, 3]. Data were either designated as fully

congruent with the tree (CI = 1) or incongruent

(0 < CI < 1). We repeated this procedure to create data-

sets composed of 100, 350 and 1000 characters on both

the fully symmetrical and the fully asymmetrical 32 tip

generating trees. For the lower CI bins (0–0.1 binary

characters, 0.1–0.2 multistate characters), the constraint

of the per-character CI values was violated to obtain the

correct per-matrix CI value. The lowest CI bin (0.0–0.1)
was only used for the binary data, not multistate data. R

scripts to simulate data are available in Dryad (Puttick

et al. 2018).

Tree estimation

Trees were estimated from the simulated matrices using

both equal weights and implied weights parsimony in

4 PALAEONTOLOGY



TNT (Goloboff et al. 2003a, 2008; Goloboff & Catalona

2016), maximum likelihood in IQ-Tree (Minh et al.

2013) and with Bayesian inference using MrBayes 3.2.6

(Ronquist et al. 2012). For maximum likelihood and

Bayesian estimation of trees, the Mkv model of morpho-

logical evolution was applied with rate heterogeneity

modelled with a discretized gamma distribution with four

categories. For Bayesian estimation of trees, 1 000 000

MCMC generations were performed for each replicate,

with every 100th sample retained to produce a final

posterior sample of 15 000 trees, over two runs of four

metropolis-coupled chains after a 25% burn-in. A stop

rule was also applied so that, if the standard deviation of

split frequencies dropped below 0.01, then the analysis

would automatically terminate as the posterior distribu-

tion had been judged to be adequately sampled. Three

values of the concavity constant (k = 2, 10, 20) were

tested for the implied weights parsimony analyses, and

the results from analyses using different k-values were

pooled together.

A

B

F IG . 2 . Empirical distribution of the proportion of characters in each bin from empirical datasets for: A, binary; B, multistate charac-

ters. The value that was used to simulate datasets with whole-matrix CI value in each bin is shown in blue. The bin of whole-matrix

values of 0.0–0.1 was not used for multistate data. Note that binary characters cannot achieve values of CI > 0.5 < 1.0.

PUTT ICK ET AL . : PHYLOGENETIC ANALYS I S OF NONPROBABIL I ST IC DATA 5



Output trees

We considered three consensus-tree types constructed

from the output of the different inference frame-

works: standard output, split support > 0.5 and split

support > 0.95. Standard output trees are outputs from

each analysis: 50% majority-rule trees of the post burn-in

MCMC sample obtained during Bayesian analysis, the

fully bifurcating maximum likelihood estimate of topol-

ogy, and the 50% majority-rule consensus constructed

from the set of most parsimonious trees from equal

weights or implied weights analyses.

As well as the standard output trees, we incorporated

uncertainty in clade support into our analyses by collaps-

ing splits into soft polytomies if their associated support

value fell below a specified value. Bayesian estimation

with MrBayes produces a 50% majority-rule consensus

from the posterior sample by default; these trees were

used in the subsequent analyses. For parsimony methods

and maximum likelihood, we incorporated uncertainty

via nonparametric bootstrapping. For maximum likeli-

hood, we employed the ultrafast bootstrapping algo-

rithm with 1000 replicates (Minh et al. 2013), and for

equal weights and implied weights parsimony, we used

nonparametric bootstrapping to measure the proportion

of replicates containing the relevant split (Felsenstein

1985; Goloboff et al. 2003b). Using these proportions, we

subsequently collapsed branches if they had lower than

0.5 bootstrap support (split support ≥ 0.5) or 0.95 sup-

port (split support ≥ 0.95).

Assessing the accuracy of topology estimates

We assessed topological accuracy by comparing the esti-

mated tree topologies to the generating trees using the

Robinson–Foulds distance between these two trees

(Robinson & Foulds 1981). The Robinson–Foulds metric

is equal to the sum of splits found in one tree but not

the other: a value of zero indicates two trees that are

either identical or that one tree is fully unresolved;

higher values indicate increasing topological discordance.

As this measure does not discriminate whether topologi-

cal concordance is achieved because the estimated tree

is similar and well resolved, or because it is poorly

resolved, we also compared the distribution of Robin-

son–Foulds values with the number of resolved nodes in

each estimated tree.

The proportion of accurate and inaccurate nodes

For each estimated tree, we identified the number of

accurate and inaccurate nodes: those present and absent,

respectively, in the generating tree. We also examined

whether nodes that were deeper in the true phylogenies

were more or less likely or to be accurately resolved than

nodes closer to the tips of the tree.

RESULTS

All phylogenetic methods show increasing topological

accuracy (lower Robinson–Foulds distance) with an

increase in the number of analysed characters and/or an

increase in character congruence with the simulation tree

(greater CI values) (Figs 3–7; Puttick et al. 2018, figs S1–
S11). The Bayesian implementation of the Mk model was

able to recover the highest numbers of nodes when

branches with less than 0.95 support are collapsed

(Table 1; Puttick et al. 2018, tables S1, S3, S5, S7 and

S9). All methods are generally more accurate when esti-

mating topology using data simulated on the symmetrical

tree than when analysing data simulated on the asymmet-

rical tree (Table 2; Puttick et al. 2018, tables S2, S4, S6,

S8 and S10). Overall, the Bayesian implementation of the

Mk model was able to recover the greatest number of

correct nodes; this trend is most pronounced when only

splits with ≥ 0.95 support are presented in the estimated

topology.

Ability to resolve nodes

For the standard output trees, the Bayesian implementa-

tion of the Mk model recovers the fewest correct nodes

in the lowest CI bins and the maximum likelihood imple-

mentation of the Mk model recovers the most nodes (the

topology is strictly bifurcating) (Figs 5–7). The majority-

rule consensus topologies of the most parsimonious trees

from the equal weights and implied weights analyses tend

to recover a large number of nodes, albeit with high vari-

ance (Figs 5–7; Table 1).

All methods, apart from the maximum likelihood imple-

mentation of the Mk model, struggle to recover nodes at

≥ 0.5 support, when analysing the smallest character matri-

ces comprised of characters with the lowest consistency

(Figs 5–7). In the 0.1 CI bin, the median resolution is for a

single node for all methods apart from maximum likeli-

hood (Figs 5–7). For both parsimony methods, only one

node is resolved in the 0.1 bin with 350 and 1000 characters

(Puttick et al. 2018, tables S1, S3). For CI bins 0.2–0.5 (in-

clusive), Bayesian and maximum likelihood implementa-

tions of the Mk model resolve a higher number of nodes

than either parsimony method with both data types (binary

and multistate). At CI bins of > 0.7, for 350 and 1000 char-

acter datasets, all methods achieve full resolution with

almost no variance (Figs 5–7).
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For 0.95 support trees, all methods estimate trees with

few nodes when analysing 100 characters from the lower

CI bins. However, Bayesian inference and maximum like-

lihood methods resolve a larger number of nodes when

compared to either parsimony method; the Bayesian

implementation of the Mk model recovers a greater num-

ber of nodes than the maximum likelihood implementa-

tion (Figs 5–7). These trends also hold at 350 and 1000

analysed characters, but only in the lower CI bins

(Figs 5–7).

Tree accuracy

Different trends in accuracy are seen with different output

types, but only at lower CI bins. Above a CI value of
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F IG . 3 . Robinson–Foulds distances for standard output trees: 50% majority-rule Bayesian, equal weights (EW) parsimony, implied

weights (IW) parsimony, and maximum likelihood (ML) trees recovered from analysis of the binary (A–F) and multistate (G–L) char-
acter datasets, generated from asymmetric (A–C, G–I) and symmetric (D–F, J–L) trees. All methods converge in the analysis of large

datasets of very consistent characters. With small and low consistency datasets, Bayesian exhibits greatest accuracy, followed in order

by IW parsimony, EW parsimony and ML.
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around 0.7, all methods recover the generating tree with

little imprecision (Table 2; Fig. 3). At lower CI bins,

Bayesian inference outperforms all other methods with

the standard output trees.

With the 0.5 support trees, the Bayesian Mk model

generally has the highest median performance, and the

relative performance of implied weights improves consid-

erably with increasing CI values. The accuracy of implied

weights is sometimes nonsignificantly higher than other

methods in bins with moderate CI values (i.e. ~0.5). Of
the other methods, maximum likelihood tends to infer

trees that are slightly more accurate than trees inferred

under equal weights parsimony (Fig. 3).

When splits with only ≥ 0.95 support are considered,

all methods perform equally poorly in the lowest CI bins

(0.0–0.1 for binary data, 0.1–0.2 for multistate). In the

remaining bins with low CI values (0.1–0.5 binary, 0.2–
0.5 multistate), Bayesian inference under the Mk model is
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sion. This contrast diminishes when considering (B) 50% and (C) 95% support trees, but Bayesian analysis continues to perform best

in recovering trees that are more resolved, while maintaining accuracy. Colour online.

PUTT ICK ET AL . : PHYLOGENETIC ANALYS I S OF NONPROBABIL I ST IC DATA 9



5

10

15

20

25

30

35
100 characters 350 characters

asymmetric tree

1000 characters 100 characters 350 characters

symmetric tree

1000 characters

Bayesian
ML
EW
IW

st
an

da
rd

 o
ut

pu
t

5

10

15

20

25

30

35

R
ob

in
so

n–
F

ou
ld

s 
di

st
an

ce

0.
5 

su
pp

or
t

5

10

15

20

25

30

35

0.
95

 s
up

po
rt

30

25

20

15

10

5

0

st
an

da
rd

 o
ut

pu
t

30

25

20

15

10

5

0

re
so

lv
ed

 n
od

es

0.
5 

su
pp

or
t

30

25

20

15

10

5

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Consistency Index

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
95

 s
up

po
rt

F IG . 6 . Exponential model fit to Robinson–Foulds distance and resolution with increasing consistency index (CI) values based on

the standard output, 50% and 95% support trees, based on datasets composed of binary characters generated from asymmetric and

symmetric trees. The performance of all methods converge with increasing CI and with increased data; however, Bayesian analysis

achieves greater accuracy (lower Robinson–Foulds distances) and precision (higher resolution) than the other methods in analysis of

datasets with low CI and small numbers of characters.

10 PALAEONTOLOGY



the most accurate method. Bayesian inference outper-

forms all other methods when branches with less than

0.95 support are collapsed, with maximum likelihood

being the second most accurate method (Fig. 4).

Proportion of accurate and inaccurate nodes

For the standard output trees, Bayesian inference presents

the fewest incorrect nodes compared to the other

methods (Figs 5, 6). The 0.5 support trees recovered from

analysis of datasets from the lowest CI bins show a dra-

matic decrease in the number of correct and incorrect

nodes from maximum likelihood, equal weights and

implied weights. Overall, Bayesian inference has a higher

median number of correct nodes, and fewer incorrect

nodes compared to all other methods (Fig. 7, figs S12–
S16). The median number of correct nodes in the 0.95

support trees is higher for Bayesian analysis than for all

other methods in analysis of datasets from CI bins 0.0–
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F IG . 7 . Number of correct and incorrect nodes recovered using the different phylogenetic methods based on datasets comprised of

100 binary characters. The performance of all methods converges with increasing CI and increased stringency in resolving nodes based

on their levels of support. Bayesian analysis consistently recovers the fewest incorrect nodes in analysing datasets with low overall CI,

recovering comparable numbers of correct nodes to the other phylogenetic methods.
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0.5 (Fig. 7); all other methods apart from maximum like-

lihood tend to recover an unresolved, star-tree.

Location of correct nodes

For the asymmetrical tree, there is no correlation between

the length of descendent terminal branches and the ability

of different methods to resolve nodes correctly in datasets

from any CI bin (Fig. 8). For datasets comprised of binary

characters, only two datasets out of 120 show a significant

correlation between the distance separating the node from

its descendent tip and the ability to accurately reconstruct a

tip value (Spearman’s rank) for all methods. Of the multi-

state datasets, 22% show a significant correlation between

the distance of a node from the tips and accuracy.

For the symmetrical generating tree, all methods

demonstrate a greater ability to resolve nodes separating

the two largest clades (Fig. 8). The trend is only signifi-

cantly different for Bayesian inference and maximum like-

lihood, but this is probably due to the smaller sample size

in the parsimony analyses.

DISCUSSION

The performance of competing phylogenetic methods is

very similar when analysing cladistic matrices that exhibit

a high proportion of consistent characters. If the matrix-

wide CI value for a dataset is ~0.5 and above, all methods

tend to estimate the correct topology with minimal error

(Table 1; Figs 3, 5, 6). Thus, it could be argued that any

method could be applied to morphological data matrices

to recover the true tree when data are of high quality and

have been generated by random state assignment followed

by screening on their numbers of steps (Goloboff &

TABLE 1 . Median and range of the number of resolved nodes for all methods based on the 100 binary character dataset.

CI Bin Asymmetric tree Symmetric tree

Bayesian ML EW IW Bayesian ML EW IW

Standard output 0.1 1 (1–4) 30 (30–30) 29 (3–30) 30 (29–30) 1 (1–4) 30 (30–30) 29 (5–30) 30 (29–30)
0.2 11 (3–19) 30 (30–30) 27 (18–30) 30 (24–30) 7 (2–17) 30 (30–30) 28 (8–30) 29 (25–30)
0.3 19 (12–27) 30 (30–30) 27 (18–30) 29 (25–30) 19 (8–25) 30 (30–30) 26 (17–30) 28 (23–30)
0.4 20 (10–27) 30 (30–30) 25 (18–30) 26.5 (22–30) 17 (10–26) 30 (30–30) 23 (18–29) 25 (20–29)
0.5 24 (15–29) 30 (30–30) 25 (15–30) 27 (20–30) 24 (15–30) 30 (30–30) 24 (20–30) 26 (20–30)
0.6 25 (19–30) 30 (30–30) 25 (21–29) 27 (22–30) 25 (21–30) 30 (30–30) 25 (20–30) 26 (22–30)
0.7 28 (25–30) 30 (30–30) 27 (24–30) 28 (24–30) 28 (25–30) 30 (30–30) 28 (25–30) 28 (25–30)
0.8 29 (25–30) 30 (30–30) 28 (25–30) 29 (25–30) 29 (26–30) 30 (30–30) 28 (25–30) 29 (26–30)
0.9 29 (27–30) 30 (30–30) 29 (25–30) 29 (26–30) 29 (26–30) 30 (30–30) 29 (25–30) 29 (25–30)
1.0 29 (26–30) 30 (30–30) 29 (26–30) 29 (26–30) 29 (27–30) 30 (30–30) 29 (27–30) 29 (27–30)

0.5 support 0.1 1 (1–4) 9 (2–19) 1 (1–3) 1 (1–3) 1 (1–4) 8 (1–18) 1 (1–2) 1 (1–2)
0.2 11 (3–19) 20 (11–26) 1 (1–6) 3 (1–18) 7 (2–17) 13 (6–24) 1 (1–4) 2 (1–14)
0.3 19 (12–27) 25 (19–29) 5 (2–10) 13 (3–29) 19 (8–25) 24.5 (15–29) 4 (1–9) 10 (1–26)
0.4 20 (10–27) 26 (21–29) 8 (3–14) 15 (7–26) 17 (10–26) 24 (14–29) 7 (2–14) 12 (4–25)
0.5 24 (15–29) 28 (22–30) 16 (8–24) 22 (11–29) 24 (15–30) 27 (19–30) 17 (7–26) 23 (9–29)
0.6 25 (19–30) 28 (24–30) 20 (14–26) 24 (18–29) 25 (21–30) 28 (24–30) 21 (14–28) 24 (16–29)
0.7 28 (25–30) 29 (26–30) 26 (21–30) 27 (24–30) 28 (25–30) 29 (26–30) 27 (21–30) 28 (24–30)
0.8 29 (25–30) 30 (26–30) 28 (22–30) 29 (25–30) 29 (26–30) 29 (26–30) 28 (24–30) 29 (25–30)
0.9 29 (27–30) 30 (28–30) 28 (25–30) 29 (26–30) 29 (26–30) 29 (26–30) 29 (25–30) 29 (25–30)
1.0 29 (26–30) 30 (26–30) 29 (26–30) 29 (26–30) 29 (27–30) 29 (28–30) 29 (27–30) 29 (27–30)

0.95 support 0.1 1 (1–1) 1 (1–2) 1 (1–1) 1 (1–1) 1 (1–1) 1 (1–2) 1 (1–1) 1 (1–1)
0.2 2 (1–5) 1 (1–7) 1 (1–1) 1 (1–1) 2 (1–6) 1 (1–4) 1 (1–1) 1 (1–2)
0.3 6 (2–11) 4 (1–9) 1 (1–2) 1 (1–4) 8 (1–13) 4 (1–9) 1 (1–2) 1 (1–4)
0.4 6 (2–11) 4 (2–10) 1 (1–3) 1 (1–4) 7 (2–13) 5 (2–10) 1 (1–2) 1 (1–5)
0.5 11 (5–17) 7 (2–13) 1 (1–4) 2 (1–8) 14 (8–20) 9 (4–13) 2 (1–5) 3 (1–9)
0.6 14 (8–18) 8 (4–13) 2 (1–6) 4 (1–8) 15 (8–21) 9.5 (6–15) 3 (1–7) 5 (1–10)
0.7 21 (16–25) 15 (10–19) 7 (2–13) 9 (2–16) 22 (17–28) 14.5 (10–19) 9 (3–14) 11 (5–16)
0.8 25 (20–30) 19 (14–25) 11 (5–17) 13 (8–18) 24 (20–28) 18 (13–22) 13 (8–17) 15 (10–20)
0.9 27 (22–30) 22 (18–26) 14 (9–18) 15 (10–20) 25 (22–29) 20 (15–24) 15 (10–20) 16 (11–21)
1.0 29 (25–30) 25 (21–29) 16 (12–21) 17 (13–21) 28 (25–30) 21 (18–25) 17 (12–23) 17 (12–23)

Different levels of resolution are achieved when different support values are used to collapse branches.
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Wilkinson 2018). However, when there are high levels of

homoplasy in the data, the relative performance of com-

peting phylogenetic methods varies (Table 2; Fig. 3).

Unfortunately, the proportion of homoplastic characters

in a dataset can only be evaluated with reference to a

phylogenetic hypothesis and, for empirical datasets, there

can be no knowledge of the levels of homoplasy before

estimating a phylogeny. Thus, it is the relative perfor-

mance of phylogenetic methods in analysis of datasets

dominated by homoplasy that is most informative in

designing phylogenetic analyses of empirical datasets.

Bayesian inference with the Mk model achieves the high-

est accuracy in analyses of datasets exhibiting the highest

levels of homoplasy (Table 2; Fig. 3). However, multistate

datasets from CI bins 0.3–0.6 (100 and 350 characters)

are an exception; for these, implied weights parsimony

has a median value of 2 units of Robinson–Foulds dis-

tance lower than Bayesian inference (Puttick et al. 2018,

tables S6, S8). However, the only examples in which there

is no overlap in accuracy between different methods are

the analyses in which Bayesian inference is the best-per-

forming method (Table 2). In analyses of datasets com-

prised of more consistent characters, there is always

substantial overlap between the performance of methods,

with low variation between all methods.

Tree accuracy

Binary data. The standard output and 0.5 support trees

show greatest discrepancy between phylogenetic methods

for datasets with a CI between 0.0 and 0.4 (Table 2;

Figs 3, 6). In the first bin, CI 0.0–0.1, all methods per-

form poorly. However, the Bayesian implementation of

the Mk model is much more accurate than the next-best

method, implied weights parsimony (Fig. 3). The median

TABLE 2 . Median and range of Robinson–Foulds distances for all methods based on the 100 binary character dataset.

CI

Bin

Asymmetric tree Symmetric tree

Bayesian ML EW IW Bayesian ML EW IW

Standard

output

0.1 29 (29–32) 58 (56–58) 57 (31–58) 58 (54–58) 29 (29–32) 58 (56–58) 57 (33–58) 58 (54–58)
0.2 26 (19–32) 36 (24–56) 48 (38–56) 35 (19–58) 26 (17–33) 44 (14–56) 51 (32–58) 35 (15–56)
0.3 18 (8–28) 22 (8–34) 33 (13–44) 20 (5–37) 14 (6–27) 16 (4–44) 30 (13–49) 13 (4–40)
0.4 17 (5–24) 22 (2–36) 23 (11–33) 17 (1–28) 15 (6–25) 18 (4–42) 19 (5–33) 12 (4–28)
0.5 11 (3–20) 12 (4–26) 13 (4–28) 10 (2–21) 8 (1–17) 10 (0–26) 9 (1–22) 7 (1–20)
0.6 9 (2–16) 10 (2–20) 10 (2–18) 8 (1–17) 5.5 (1–14) 6 (0–20) 6 (1–13) 5 (1–14)
0.7 4 (0–10) 4 (0–12) 5 (0–10) 3 (0–10) 2 (0–7) 2 (0–10) 2.5 (0–8) 2 (0–6)
0.8 2 (0–7) 2 (0–10) 2 (0–7) 1 (0–7) 2 (0–6) 2 (0–8) 2 (0–7) 1 (0–6)
0.9 1 (0–7) 2 (0–10) 2 (0–7) 1 (0–6) 1 (0–6) 2 (0–8) 1 (0–5) 1 (0–5)
1.0 1 (0–5) 2 (0–6) 1 (0–4) 1 (0–4) 1 (0–5) 1 (0–6) 1 (0–3) 1 (0–3)

0.5 support 0.1 29 (29–32) 37 (30–47) 29 (29–31) 29 (29–31) 29 (29–32) 36 (29–46) 29 (29–30) 29 (29–30)
0.2 26 (19–32) 30 (20–42) 29 (27–32) 28 (16–33) 26 (17–33) 31 (14–40) 29 (27–30) 28 (16–30)
0.3 18 (8–28) 19 (7–29) 27 (21–31) 20 (5–29) 14 (6–27) 14 (6–31) 27 (22–30) 21 (5–29)
0.4 17 (5–24) 20 (3–32) 23 (16–31) 18 (4–26) 15 (6–25) 15 (5–31) 23.5 (17–30) 18 (9–27)
0.5 11 (3–20) 11 (4–24) 15 (7–26) 11 (3–24) 8 (1–17) 8 (2–18) 13 (4–23) 8 (1–21)
0.6 9 (2–16) 9 (2–18) 11 (4–19) 8.5 (1–16) 5.5 (1–14) 6 (1–18) 9.5 (3–16) 6 (1–14)
0.7 4 (0–10) 4 (0–11) 5 (0–10) 3 (0–10) 2 (0–7) 3 (0–8) 3 (0–11) 2 (0–7)
0.8 2 (0–7) 2 (0–8) 3 (0–8) 2 (0–7) 2 (0–6) 2 (0–6) 2 (0–6) 1 (0–6)
0.9 1 (0–7) 1.5 (0–9) 2 (0–7) 1 (0–6) 1 (0–6) 1 (0–7) 1 (0–5) 1 (0–5)
1.0 1 (0–5) 1 (0–6) 1 (0–4) 1 (0–4) 1 (0–5) 1 (0–5) 1 (0–3) 1 (0–3)

0.95 support 0.1 29 (29–29) 29 (28–30) 29 (29–29) 29 (29–29) 29 (29–29) 29 (29–30) 29 (29–29) 29 (29–29)
0.2 28 (25–29) 29 (27–30) 29 (29–29) 29 (29–29) 28 (24–30) 29 (27–30) 29 (29–29) 29 (28–29)
0.3 24 (19–29) 27 (22–29) 29 (28–29) 29 (26–29) 22 (17–29) 26 (21–29) 29 (28–29) 29 (26–29)
0.4 25 (19–29) 26 (21–30) 29 (27–29) 29 (26–29) 23 (17–28) 25 (20–28) 29 (28–29) 29 (25–29)
0.5 19 (13–26) 23 (17–28) 29 (26–29) 28 (22–29) 16 (10–22) 21.5 (17–26) 28 (25–29) 27 (21–29)
0.6 16 (12–22) 22 (17–26) 28 (24–29) 26 (22–29) 15 (9–22) 20.5 (15–24) 27 (23–29) 25 (20–29)
0.7 9 (5–14) 15 (11–20) 23 (17–28) 21 (14–28) 8 (2–13) 15.5 (11–20) 21 (16–27) 19 (14–25)
0.8 5.5 (0–11) 11 (5–16) 19 (13–25) 17 (12–22) 6 (2–10) 12 (8–17) 17 (13–22) 15 (10–20)
0.9 3 (0–8) 8 (4–12) 16 (12–21) 15 (10–20) 5 (1–8) 10 (6–15) 15 (10–20) 14 (9–19)
1.0 1 (0–5) 5 (1–9) 14 (9–18) 13 (9–17) 2 (0–5) 9 (5–14) 13 (7–18) 13 (7–18)

Different levels of resolution are achieved when different support values are used to collapse branches.
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F IG . 8 . Location of correct nodes resolved on each tree for all methods using the binary dataset. None of the phylogenetic methods

exhibit obvious trends in the relationship between node accuracy and topology in analysis of data generated from the asymmetric tree;

all methods show the same trend in topological accuracy in analysis of data generated from the symmetric tree. Colour online.
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Robinson–Foulds distance for Bayesian inference is 25

units lower than implied weights parsimony for both the

symmetrical and the asymmetrical topologies. These

results are also reflected in the difference between datasets

from the upper and lower range of CI values, as Bayesian

inference exhibits a smaller upper range. Before support

is taken into account, equal weights parsimony and maxi-

mum likelihood perform poorly in comparison with other

methods, with equal weights parsimony generally being

the most inaccurate method (O’Reilly et al. 2017; Puttick

et al. 2017a).

At this extremely high level of homoplasy (CI 0.0–0.1),
Bayesian inference outperforms other methods as it recov-

ers trees that lack resolution and, thus, achieves accuracy

when competing methods resolve only incorrect nodes

(Table 1; Fig. 7). In the next two bins (CI 0.1–0.3), the
differences between methods decrease, but Bayesian infer-

ence has the lower median and upper-range Robinson–
Foulds values. In CI bins above 0.5, the variance between

methods is generally only 1 Robinson–Foulds unit and

implied weights parsimony generally outperforms Bayesian

inference, albeit marginally (Table 2). In a comparison to

Bayesian inference, implied weights parsimony achieves a

lower value for the upper range of Robinson–Foulds dis-

tances in only 12 out of 60 combinations of analysis.

Multistate data. The trends exhibited by analyses of binary

character datasets are similar, but not identical to results of

analyses of the multistate character datasets. Bayesian infer-

ence is still the best-performing method when there is large

variation in the data (Robinson–Foulds distances > 3).

Unlike the binary character datasets, implied weights parsi-

mony is the best-performing method in CI bins 0.3–0.6.
Yet in some comparable bins, the upper range of Robin-

son–Foulds values is equal or superior for Bayesian infer-

ence compared to implied weights.

Impact of support

The general trends in the relative performance of methods

at low CI values continue when nodes with less than 0.5

support are collapsed. However, differences in the perfor-

mance of Bayesian inference and competing phylogenetic

methods are diminished relative to the standard output

trees (Brown et al. 2017; O’Reilly et al. 2017). The largest

increase in accuracy achieved by incorporating this mea-

sure of support is seen in trees recovered by implied

weights parsimony (Fig. 3). However, Bayesian inference

is still the most accurate method in analysis of datasets

with low CI.

When only nodes with the highest (≥ 0.95) support are

considered, Bayesian inference outperforms all methods

(Fig. 7). When only nodes with high levels of support are

considered (Figs 4–8), all methods, bar Bayesian infer-

ence, exhibit relatively high levels of inaccuracy. At ≥ 0.95

support, only Bayesian inference is able to achieve both

high levels of accuracy and precision. Thus, if the goal of

researchers is to achieve high accuracy with confidence,

this ≥ 0.95 support threshold should be applied to avoid

the inclusion of erroneous clades. These results contradict

previous findings, that Bayesian methods achieved higher

accuracy at the expense of low precision, even when accu-

racy and precision are measured in the same way

(O’Reilly et al. 2016, 2017; Puttick et al. 2017a).

Simulation procedure

Previous analyses comparing the relative efficacy of differ-

ent methods have used continuous time Markov chain

models of evolution in which branch lengths are shared

across characters in models similar to those used in

molecular analyses (Wright & Hillis 2014; O’Reilly et al.

2016, 2017; Puttick et al. 2017a, b; Brown et al. 2017).

This approach has been criticized for its potential to gen-

erate datasets that are biased towards model-based

approaches where changes are proportional to branch

lengths, and long-branch attraction is not a known prob-

lem (Felsenstein 1978; Siddall 1998; Philippe et al. 2005).

In this vein, Goloboff et al. (2017) simulated data using a

model in which there is no assumption of shared branch

lengths amongst characters, concluding that implied

weights parsimony is the most accurate phylogenetic

method for the analysis of categorical morphological

data. Responding to work by O’Reilly and colleagues

(O’Reilly et al. 2016, 2017; Puttick et al. 2017a), Goloboff

et al. (2017) attempted to account for the empirical real-

ism of their simulated matrices in a different manner,

not by screening simulated matrices for realism, but by

incorporating empirical characteristics of homoplasy into

the simulation procedure itself. Goloboff et al. (2017)

pooled all characters from 158 empirical datasets into

one large homoplasy distribution that appeared to be

approximately exponentially distributed; the rate parame-

ter of an exponential fitted to this distribution was then

used to guide their simulation procedure. This procedure

produced an overall distribution of homoplasy that

resembled the empirical survey. However, data sets simu-

lated using their code exhibit a per-character homoplasy

distribution within datasets that have a proportionally

greater number of consistent characters than do empirical

datasets (O’Reilly et al. 2018). Thus, in the light of our

results, the superior accuracy of implied weights parsi-

mony in analysis of the datasets simulated by Goloboff

et al. (2017) is equally unsurprising and unrealistic, as

the per-matrix proportion of highly consistent characters

used by Goloboff et al. (2017) falls in a narrow
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simulation area in which all methods do well, but

implied weights performs best (Table 2; Figs 3, 5, 6).

There is substantial overlap in the performance of all

methods in analysis of the datasets in which implied

weights parsimony performs best (Goloboff et al. 2017).

Indeed, all methods perform extremely well on datasets

with a high proportion of consistent characters; at lower

levels of consistency, the Bayesian implementation of the

Mk model tends to outperform the other phylogenetic

methods. Implied weights parsimony performs well when

there are large numbers of consistent characters because it

can up-weight the large number of consistent characters,

and down-weight the small number of inconsistent char-

acters in datasets. However, implied weights parsimony is

not generally able to correctly assign weights to consistent

characters when homoplasy is high (CI bins 0.0–0.4), sug-
gesting that in these circumstances implied weights gives

higher weight to homoplastic characters, rather than

consistent characters (Congreve & Lamsdell 2016).

Our simulation procedure addresses fully the concerns

and criticisms raised by Goloboff et al. (2017, 2018).

There is no reliance on Markov models used for phyloge-

netic inference, and there is no expectation of shared

branch lengths between characters. Encouragingly, these

assumptions of the simulation procedure are evident in

the simulated data. For example, there is evidence that all

nodes are equally likely to be resolved (Fig. 8). Further-

more, the entire range of possible CI values is simulated

in our datasets and we differentiate the performance of

the competing phylogenetic methods in analysis of data-

sets exhibiting different overall CI. Given that our simula-

tion procedure did not allow for unobserved character

changes, it is perhaps surprising that the model-based

phylogenetic methods performed so well relative to parsi-

mony methods.

As we have shown here, the method of simulation is

perhaps less significant than the empirical realism of the

data simulated (O’Reilly et al. 2018). Our simulation pro-

cedure could not be accused of faithfully reflecting the

process of morphological evolution; it was formulated to

complement previous simulation studies (Wright & Hillis

2014; O’Reilly et al. 2016, 2017; Puttick et al. 2017a).

These also demonstrated the superiority of model-based

phylogenetic methods in analysing morphology-like data

but, while many of them were designed to violate

assumptions underlying the Mk model, it could be argued

that they biased against parsimony-based phylogenetic

methods (Goloboff et al. 2017, 2018). If anything, by vio-

lating assumptions of model-based methods, the simula-

tions should favour parsimony over other methods. The

results of all of these simulation-based tests demonstrate

that when datasets are large and/or comprised of princi-

pally consistent characters, competing phylogenetic

methods recover similar estimates. However, when there

are large differences between the estimates from compet-

ing phylogenetic methods, Bayesian inference generally

recovers the most accurate estimate. Hence, we conclude

that the Bayesian implementation of the Mk model

should be preferred for the phylogenetic analysis of

categorical morphological data.
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