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Abstract: Fossil taxa are critical to inferences of historical

diversity and the origins of modern biodiversity, but realizing

their evolutionary significance is contingent on restoring fossil

species to their correct position within the tree of life. For

most fossil species, morphology is the only source of data for

phylogenetic inference; this has traditionally been analysed

using parsimony, the predominance of which is currently

challenged by the development of probabilistic models that

achieve greater phylogenetic accuracy. Here, based on simu-

lated and empirical datasets, we explore the relative efficacy of

competing phylogenetic methods in terms of clade support.

We characterize clade support using bootstrapping for parsi-

mony and Maximum Likelihood, and intrinsic Bayesian pos-

terior probabilities, collapsing branches that exhibit less than

50% support. Ignoring node support, Bayesian inference is

the most accurate method in estimating the tree used to sim-

ulate the data. After assessing clade support, Bayesian and

Maximum Likelihood exhibit comparable levels of accuracy,

and parsimony remains the least accurate method. However,

Maximum Likelihood is less precise than Bayesian phylogeny

estimation, and Bayesian inference recaptures more correct

nodes with higher support compared to all other methods,

including Maximum Likelihood. We assess the effects of these

findings on empirical phylogenies. Our results indicate proba-

bilistic methods should be favoured over parsimony.

Key words: phylogenetic analysis, morphology, parsimony,

Maximum Likelihood, Bayesian, Mk model.

THE goal of reconstructing an holistic Tree of Life has

been envisaged since the inception of evolutionary theory.

This entails not only the use of molecular phylogenetics

to determine the inter-specific relationships between

extant taxa, but also the restoration of extinct branches to

the Tree of Life. For the majority of extinct species, this

can only be achieved through phylogenetic analysis of

morphological data. Parsimony has dominated the phylo-

genetic analysis of morphological data but its hegemony

is now challenged by model-based phylogenetic methods

that attempt to approach the realism of models of evolu-

tion developed for molecular evolution (Lewis 2001).

Simulation-based studies have shown that parsimony is

less accurate than Bayesian analysis for phylogenetic infer-

ence with morphological data (Wright & Hillis 2014;

O’Reilly et al. 2016; Puttick et al. 2017). Previous studies

(O’Reilly et al. 2016; Puttick et al. 2017) treated the 50%

majority rule consensus tree constructed from a sample

of trees from the posterior distribution (hereafter the

Bayesian tree) as optimality trees (following Holder et al.

2008) and compared them directly to the optimal Maxi-

mum Likelihood and Maximum Parsimony trees. How-

ever, because Bayesian trees have intrinsic support values

(posterior probabilities) some have argued that they

should be compared to bootstrapped Maximum Likeli-

hood trees (Huelsenbeck et al. 2001), even though post-

erior probabilities and bootstrap proportions are neither

interchangeable nor directly comparable (Douady et al.

2003). Brown et al. (2017) showed that, when clade

support is considered, Maximum Likelihood and Bayesian

implementations of the Mk model are effectively indistin-

guishable in terms of topological accuracy.

Here we develop upon previous studies to incorporate

measures of clade support in the investigation of the
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performance of parsimony relative to Maximum Likeli-

hood and Bayesian implementations of the Mk model in

the phylogenetic analyses of morphological data. An ini-

tial comparison of the accuracy and resolution of differ-

ent methods is achieved through the use of simulated

data. We take a simulation-based, rather than an empiri-

cal approach since the performance of phylogenetic meth-

ods in tree estimation can only be assessed when the tree

is known; this is never the case for empirical data. Empir-

ical analyses are performed to demonstrate the influence

of methods on the testing of phylogenetic hypotheses. We

compare clade support using standard methods, with pos-

terior probabilities obtained from posterior samples of

Bayesian trees and non-parametric bootstrap proportions

calculated for most-parsimonious and Maximum Like-

lihood trees, collapsing poorly-supported (nodes with

< 0.5 posterior probability, or present in < 50% of boot-

strap replicates) nodes in trees constructed with each

method. We find that parsimony has low accuracy com-

pared to both Bayesian and Maximum Likelihood imple-

mentations of the Mk model. However, the Bayesian

implementation still achieves higher support values on

correct nodes than does the Maximum Likelihood imple-

mentation. Based on these results, we conclude that a

Bayesian implementation of the Mk model should be pre-

ferred over the Maximum Likelihood implementation

when analysing categorical morphological data. Neverthe-

less, both implementations are superior to parsimony

when analysing categorical morphological data.

MATERIAL AND METHOD

Simulated data

For all analyses, we estimated topologies and support val-

ues using datasets of 100, 350, and 1000 characters from

Puttick et al. (2017), simulated on both the asymmetrical

and symmetrical phylogenies; these variables allowed us

to explore the impact of both character matrix size and

tree symmetry on phylogeny estimation. We generated

1000 independent datasets for each tree and character set

size. These data were simulated to ensure that they

matched an empirical distribution of homoplasy. To

reduce potential biases in favour of the use of the Mk

model for phylogenetic inference (regarding Parsimony,

see O’Reilly et al. 2016) we simulated our data using a

model with more parameters than the Mk model: the

HKY + Γcontinuous model of molecular evolution (Hase-

gawa et al. 1985), with the transition to transversion ratio

parameter k fixed to a value of 2. This approach to simu-

lation enforces the violation of the assumption of the Mk

model that a transition between any two character states

is equally probable. The substitution rate of each dataset

and the shape of the gamma distribution of character-

wise rate heterogeneity were sampled independently from

an exponential distribution of mean 1, ensuring a reason-

able level of rate heterogeneity between replicate datasets

and between the constituent characters of each replicate

matrix. The choice of rate parameters in our simulation

framework is validated by our ability to easily simulate

matrices with empirical levels of homoplasy. To ensure

data did not collapse into the Mk model and therefore

unintentionally provide a benefit when applying the Mk

model for phylogenetic inference, we applied an unequal

stationary distribution of p = [0.2, 0.2, 0.3, 0.3] in the

HKY model. Fixing the stationary distribution in this

manner enforces violation of the assumptions of the Mk

model that the limiting distribution of character states is

equal and that transitions between any two character states

are equally probable. A mixture of binary and multistate

characters was simulated, with binary characters obtained

through the R/Y (purine/pyrimidine) recoding of molecu-

lar data as character states of 0 or 1, resulting in the elimi-

nation of the transition–transversion ratio for these

characters and an effective stationary distribution of

p = [0.4, 0.6], which is a violation of the assumption of

the Mk model that character states exhibit an even limiting

distribution. Multistate characters were obtained by recod-

ing nucleotide data as character states of 0, 1, 2, or 3,

depending on the nucleotide present at each terminal. The

final ratio of binary to multistate characters in each matrix

was 55:45, based on the mean ratio observed in empirical

data (Guillerme & Cooper 2016). For each of the 100, 350,

and 1000 character sets we generated 1000 matrices that,

in total, exhibited a distribution of homoplasy approxi-

mating that reported by Sanderson & Donoghue (1996).

Goloboff et al. (2017) have criticized this approach to

simulating morphology-like datasets on the basis that our

generating trees encompass only contemporaneous taxa,

assume that evolutionary rates are constant across time

and the tree, and that our measure of biological realism,

the spread of homoplasy exhibited by datasets, is inade-

quate. However, our experiments do not attempt to sim-

ulate non-contemporary taxa or address the problem of

missing data, qualities of palaeontological data that are of

a level of complexity that is beyond the current debate.

Goloboff et al. (2017, fig. 1A) demonstrated that our sim-

ulated data broadly achieve their preferred measure of

biological realism. Our review of their datasets indicates

that, while Goloboff et al. (2017) drew characters from an

empirically realistic global distribution of homoplasy,

their simulated datasets are not individually empirically

realistic, with many matrices dominated by characters

with very high consistency and an unrealistically small

proportion of characters exhibiting high levels of homo-

plasy. The datasets simulated by Goloboff et al. (2017)

have qualities that strongly bias in favour of parsimony
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phylogenetic inference, and implied-weights parsimony in

particular, as the presence of large numbers of characters

that are congruent with the tree allows implied weights to

increase the power of these ‘true’ congruent characters.

This effect will not be possible when increased levels of

homoplasy are present or when the true tree is unknown

(as is the case for all empirical datasets).

For each of our datasets, we estimated trees using the

Maximum Likelihood and Bayesian implementations of

the Mk model, and equal-weights parsimony, in RAxML

(Stamatakis 2014), MrBayes (Ronquist et al. 2012) and

TNT (Goloboff et al. 2008), respectively. Bayesian phylo-

genetic methods that use MCMC sampling result in a dis-

tribution of trees by design, Maximum Likelihood

invariably recovers a single tree that maximizes the likeli-

hood function, and parsimony recovers one or several

equally most-parsimonious trees. In the event of the

recovery of multiple equally most-parsimonious trees, a

majority rule consensus tree was constructed from this

set. Majority rule consensus trees were constructed from

the posterior sample of trees obtained with the Bayesian

implementation of the Mk model. Alternative consensus

tree methods are available, each with their attendant

advantages and disadvantages (Heled & Bouckaert 2013;

Holder et al. 2008); we selected the majority rule consen-

sus method to maintain comparability among inference

frameworks as other consensus tree construction methods

are not universally applicable. The Robinson–Foulds
(1981) distance relative to the generating tree was calcu-

lated for each of the trees estimated across all three infer-

ence frameworks (parsimony, Maximum Likelihood and

Bayesian analysis). The Robinson–Foulds distance is well

understood and rooted in set theory, as it represents the

symmetric difference between the sets of all the clades in

each considered tree. The Robinson–Foulds distance

between two trees is calculated as the sum of the clades

found in the first tree but not in the second plus the sum

of clades found in the second tree but not the first one.

Accordingly, smaller Robinson–Foulds distances are char-

acteristic of more accurate phylogenetic trees (i.e. trees

that do not disagree with the generating tree). A draw-

back of the Robinson–Foulds metric is that small dis-

tances are expected for unresolved trees; that is, they can

be achieved without precision, by consensus trees lacking

resolution. Accordingly, to qualify whether accuracy is

achieved with or without precision, we also measure reso-

lution (i.e. number of nodes in the recovered tree) and

consider it in our interpretations.

For each method, we integrated the effect of support on

phylogenetic accuracy collapsing nodes that had < 50%

support and re-calculating the Robinson–Foulds distances

relative to the generating tree (Robinson & Foulds 1981).

In these analyses, ≥ 50% support is defined by a node with

a posterior probability of ≥ 0.5, or a node that is present

in ≥ 50% of bootstrap replicates. The trees estimated in

the Bayesian framework already represent the 50% majority

rule consensus of the posterior distribution of trees, and so

these trees are identical before and after assessing support.

For the Maximum Likelihood and parsimony analyses, we

estimated clade support using non-parametric bootstrap-

ping (Felsenstein 1985). We obtained 250 bootstrap repli-

cates for each simulated dataset in both parsimony and

Maximum Likelihood frameworks, using TNT (Goloboff

et al. 2008) and RAxML (Stamatakis 2014), respectively.

We collapsed branches on the parsimony and Maximum

Likelihood trees with < 50% bootstrap support. Support

for clades in trees estimated from Bayesian analysis was

assessed using posterior probability.

Empirical data

Puttick et al. (2017) re-analysed four published morphologi-

cal matrices (Hilton & Bateman 2006; Sutton et al. 2012;

Nesbitt et al. 2013; Luo et al. 2015) using Bayesian, Maxi-

mum Likelihood and parsimony frameworks to identify the

influence that each method has on the support for published

hypotheses. We analysed these datasets again using the same

three phylogenetic inference frameworks in addition to esti-

mating non-parametric bootstrap support for clades in these

four estimated topologies with both parsimony and the

Maximum Likelihood implementation of the Mk model

(support being obtained intrinsically within this Bayesian

framework) and collapsed nodes with less than 50% support

on the Maximum Likelihood and parsimony trees. As with

the simulated datasets, non-parametric bootstrapping was

performed in TNT and RAxML for parsimony and Maxi-

mum Likelihood, respectively, with 250 replicates obtained.

Our aim is to determine whether the phylogenetic conclu-

sions drawn in the original studies were contingent on the

phylogenetic method employed.

RESULTS

Simulations

In all of our analyses, competing phylogenetic methods

exhibited greater accuracy when reconstructing data from

the symmetrical tree compared to data from the asym-

metrical tree. For the datasets derived from the asymmet-

rical generating tree, the Bayesian and Maximum

Likelihood implementations of the Mk model out-

performed parsimony in terms of accuracy (Table 1).

Support values for nodes were generally higher when

nodes were accurately reconstructed, and this was more

pronounced in analyses of datasets generated from the

asymmetrical tree compared to those derived from the
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TABLE 1 . The median and 95% quantile of Robinson–Foulds distances for the asymmetrical and symmetrical phylogenies with 100,

350 and 1000 characters.

Bayesian

asymmetrical

ML

asymmetrical

Parsimony

asymmetrical

Bayesian

symmetrical

ML

symmetrical

Parsimony

symmetrical

100 majority rule 29 (23–35) 47 (31–59) 35 (27–48.02) 7 (1–25) 7 (1–43.05) 7 (1–26)
100 ≥ 50% branch support 29 (23–35) 30 (24–34) 30 (26–32) 7 (1–25) 7 (2–24.02) 9 (3–27)
350 majority rule 20 (12–30) 25 (13–55) 28 (18–37) 1 (1–15.02) 1 (1–23) 1 (1–15.02)
350 ≥ 50% branch support 20 (12–30) 20 (14–31) 24 (19–30) 1 (1–15.02) 1 (1–15) 1 (1–17)
1000 majority rule 9 (3–26) 11 (3–43) 18 (9–30) 1 (1–3.02) 1 (1–5) 1 (1–3.02)
1000 ≥ 50% branch support 9 (3–26) 10 (4–27) 17 (10–28) 1 (1–3.02) 1 (1–4) 1 (1–4)

ML, Maximum Likelihood
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F IG . 1 . The distribution of support values on accurate and inaccurate nodes using all methods with simulated datasets summarizing

support for all nodes, and nodes that have above 50% accuracy only. The boxplots show the support for accurate and inaccurate nodes

across all trees, and the numbers above show the mean resolution (number of nodes) of the 1000 trees. ML, Maximum Likelihood.

Colour online.
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symmetrical generating tree (Fig. 1). Bayesian methods

reconstructed the highest number of accurate nodes and had

higher support on these nodes compared to inaccurate

nodes, and accurate nodes recovered by alternative methods.

Effects of considering support values

Both the Maximum Likelihood implementation of the Mk

model and parsimony produced trees with increased

accuracy after nodes with < 50% support were collapsed.

For the asymmetrical tree, the accuracy of the Maximum

Likelihood and Bayesian implementations of the Mk model

overlap, but parsimony is the least accurate method

(Figs 2–4; Table 1). Similar results were obtained from

analysis of the data derived from the symmetrical generat-

ing tree (Table 1). For both the symmetrical and asymmet-

rical trees, accuracy increases with dataset size, and the

Bayesian and Maximum Likelihood Mk implementations

achieve very high accuracy at datasets with 1000 characters.
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F IG . 2 . Contour plots of resolution against Robinson–Foulds distance for data (100, 350, 1000 characters) simulated on the asym-

metrical tree before and after nodes with less than 50% support are collapsed. Performance of Maximum Likelihood and Parsimony

improves after these nodes are collapsed, but both Maximum Likelihood and Bayesian surpass parsimony in accuracy. EW, equal

weights. Colour online.
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Bayesian majority rule consensus trees were generally

more resolved than the 50% support trees obtained from

Maximum Likelihood topology estimates; the 50% sup-

port trees estimated using parsimony were the most con-

servative (Table 2). This trend was also observed in the

results of analyses of 100 character datasets derived from

the symmetrical generating tree. However, all methods

yielded more fully resolved 50% support trees based on

350 and 1000 character datasets.

The Bayesian Mk implementation resolves a higher num-

ber of correct nodes across all analyses (Fig. 1), and these

have higher support compared to the Maximum Likelihood

implementation and parsimony (Fig. 5). However, overall,

the Bayesian implementation resolves more inaccurate

nodes than does either the Maximum Likelihood Mk

implementation or parsimony. Median support for correct

nodes is higher in Bayesian, as opposed Maximum Likeli-

hood analyses, across all dataset sizes, and this trend is par-

ticularly evident on the asymmetric trees (Fig. 1). The

median support for correct nodes is higher than for incor-

rect nodes in trees derived from the Bayesian Mk imple-

mentation, and over all methods (Fig. 1). Bayesian support

is higher for incorrect nodes compared to Maximum Likeli-

hood and parsimony (Fig. 1). There is a clear difference in

the levels of support for correct and incorrect nodes in the

Bayesian trees, with correct nodes generally achieving

majority rule consensus
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greater than 80% support and incorrect nodes exhibiting

less than 80% support. Applying an 80% threshold for

dataset sizes of 350 and above, the Bayesian Mk

implementation resolves only correct nodes (Fig. 1); the

Maximum Likelihood Mk implementation and parsimony

do not match this level of support.

0 10
0
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0 10
0

correct node found (%)

350

characters

0 10
0

1000

Bayesian
Maximum Likelihood
Parsimony

50 1007550 10075
support values of correct nodes

50 10075

100 characters
350 characters

1000 characters

F IG . 4 . The degree of accuracy (barplots at tips) and support (density plots at nodes) for each method and all datasets on the asym-

metrical phylogeny. Performance of all methods increases with dataset size, and Bayesian methods tend to find higher support for cor-

rect nodes with datasets containing 100 characters. Colour online.
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Empirical data

There were substantial differences between the empirical

topologies derived from the Maximum Likelihood Mk

implementation and the parsimony framework, before

and after the collapse of nodes with < 50% support

(Figs 6, 7; O’Reilly et al. 2017, figs S1, S2). Smaller data-

sets showed the largest differences in topology and the

placement of key taxa whether support is accounted for

by collapsing poorly supported nodes or not.

For the smaller datasets, there was congruence between

topologies estimated with different methods after poorly

supported nodes were collapsed. Kulindroplax, from Sut-

ton et al. (2012), was not supported as a crown-mollusc

with any method when < 50% supported nodes are col-

lapsed (Fig. 6). This contrasts with the crown-mollusc

affinity of Kulindroplax in the Maximum Likelihood Mk

estimated and most-parsimonious trees (Fig. 6). A similar

pattern was observed in the topologies estimated from the

data of Hilton & Bateman (2006). Both the Maximum

Likelihood implementation of the Mk model and the par-

simony framework supported the anthophyte hypothesis

in the respective optimal trees. After collapsing nodes

with < 50% support, both methods yielded topologies

that are more congruent with the Bayesian majority rule

consensus tree, with a polytomy uniting, but not differen-

tiating between, gymnosperms, seed ferns and angios-

perms (O’Reilly et al. 2017, fig. S1).

Collapsing poorly supported nodes in trees estimated

from the empirical datasets had less impact on the place-

ment of key taxa in datasets with larger numbers of char-

acters. Within the majority rule consensus tree obtained

from the Bayesian implementation of the Mk model,

Nyasaurus was resolved in a polytomy with the major

clades of Dinosauria (Saurischia, Ornithischia; but see

Baron et al. 2017), as was shown by Nesbitt et al. (2013).

Nyasasurus was also resolved as a member of Dinosauria

in the Maximum Likelihood Mk estimate and most-parsi-

monious trees; this conclusion was not impacted by col-

lapsing nodes with less than 50% bootstrap support

(Fig. 7). However, there were changes in the certainty of

placement of Nyasasaurus after support was assessed, col-

lapsing from membership of Theropoda to Saurischia in

the Maximum Likelihood Mk analyses, and from Thero-

poda to Dinosauria in parsimony analyses. Neither the

Maximum Likelihood Mk implementation nor parsimony

recovered Saurischia, Ornithischia, Theropoda or Sau-

ropoda, though these clades were resolved by the Baye-

sian Mk implementation (Fig. 7). A similar pattern is

seen in the re-analysis of the dataset from Luo et al.

(2015). All trees, before and after accounting for support

in the final topology, resolved Haramiyavia outside

crown-Mammalia and the multiturberculates (O’Reilly

et al. 2017, fig. S2).

Analyses of the smallest dataset (34 characters, 48 taxa),

from Sutton et al. (2012), recovered only seven nodes in

the Bayesian majority rule consensus tree, but more resolu-

tion was achieved in the Maximum Likelihood Mk estimate

(32 nodes) and most-parsimonious trees (17 nodes). After

collapsing poorly-supported nodes, a similar level of reso-

lution was achieved by all methods: Maximum Likelihood

Mk implementation (8 nodes) and parsimony (6 nodes).

This contrasts with the results obtained from analyses of

the other, larger empirical datasets where, after collapsing

nodes with less than 50% support, the Bayesian Mk imple-

mentation consistently yielded trees with the greatest reso-

lution: a pattern opposite to that seen in comparison of the

optimal trees derived from the three methods of phyloge-

netic inference (Table 3).

DISCUSSION

After incorporating estimates of node support, Parsimony

is outperformed by both Maximum Likelihood and Baye-

sian implementations of the Mk model, providing further

support for the use of stochastic models of character

change in morphological data analyses (Wright & Hillis

2014; O’Reilly et al. 2016; Puttick et al. 2017). As shown by

Brown et al. (2017), Bayesian and Maximum Likelihood

TABLE 2 . The median and 95% quantile of resolution for the asymmetrical and symmetrical phylogenies with 100, 350, and 1000

characters.

Bayesian

asymmetrical

ML

asymmetrical

Parsimony

asymmetrical

Bayesian

symmetrical

ML

symmetrical

Parsimony

symmetrical

100 majority rule 8 (1–15) 30 (30–30) 16 (2–28) 27 (7–30) 30 (30–30) 27 (6.98–30)
100 ≥ 50% branch support 8 (1–15) 6 (1–12) 3 (1–7) 27 (7–30) 26 (7.98–30) 22 (4.98–28)
350 majority rule 19 (4–25) 30 (30–30) 24 (4–30) 30 (16–30) 30 (30–30) 30 (16–30)
350 ≥ 50% branch support 19 (4–25) 15 (4–23) 9 (2–15) 30 (16–30) 30 (16–30) 30 (14–30)
1000 majority rule 26.5 (8–30) 30 (30–30) 28 (7.98–30) 30 (28–30) 30 (30–30) 30 (28–30)
1000 ≥ 50% branch support 26.5 (8–30) 25 (8–29) 17 (4.98–24) 30 (28–30) 30 (28–30) 30 (27.98–30)

ML, Maximum Likelihood
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implementations of the Mk model achieve similar levels of

accuracy after collapsing weakly-supported branches on

Maximum Likelihood trees (Fig. 2). However, after node

support is considered, the Bayesian Mk implementation

recovers more correct nodes with higher support than does

the Maximum Likelihood implementation, and support

values on correct nodes are highest for the Bayesian imple-

mentation. Though bootstrapping increases the accuracy of

the Maximum Likelihood Mk implementation to a level

similar to the Bayesian implementation (Brown et al.

2017), Bayesian posterior probabilities are still higher for

correct nodes.
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Bayesian trees have highest support compared to all other methods on the asymmetrical and symmetrical phylogenies. Colour online.
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Incorporating support, probabilistic methods out-perform

parsimony, and the accuracy of ML improves

In line with previous results, probabilistic methods that

implement the Mk model (Maximum Likelihood and

Bayesian phylogenetics) achieve higher accuracy than does

parsimony (Wright & Hillis 2014; O’Reilly et al. 2016;

Puttick et al. 2017). Similar observations have been made

in analyses of molecular data using probabilistic versus

parsimony methods (Felsenstein 1978).
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F IG . 6 . Bayesian, Maximum Likelihood and parsimony topologies of the data from Sutton et al. (2012). The optimal tree with node

support is shown for each method (A–C) as well as the topologies that are produced after nodes with < 0.5 support are collapsed to

polytomies (D–F), and when nodes with < 0.8 support are collapsed (G–I). After these nodes are collapsed, no method supports a
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After considering support values, the Bayesian and

Maximum Likelihood implementations of the Mk model

achieve similar levels of accuracy (Brown et al. 2017) but

the Bayesian implementation remains superior to

Maximum Likelihood in a number of ways. The Bayesian

implementation recovers more nodes with higher support

compared to the Maximum Likelihood implementation,

but the Bayesian method also recovers more incorrect
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F IG . 7 . Bayesian, Maximum Likelihood, and parsimony topologies of the data from Nesbitt et al. (2013). The optimal tree with node

support is shown for each method (A–C) as well as the topologies that are produced after nodes with < 0.5 support are collapsed to

polytomies (D–F), and when nodes with < 0.8 support are collapsed (G–I). Only Bayesian (A) recovers the major clades of Dinosauria

(Ornithischia, Saurischia, Sauropoda, Theropoda). Colour online.
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nodes overall than does Maximum Likelihood (Fig. 5).

Thus, the Maximum Likelihood implementation also pro-

duces a more topologically conservative tree, as it recov-

ers fewer nodes overall (Fig. 1), which inevitably equates

to improved Robinson–Foulds scores (Fig. 2). Support on
the remaining correct nodes is not as high in trees

derived using the Maximum Likelihood Mk implementa-

tion as it is for the Bayesian implementation; this trend

is particularly pronounced at posterior probabilities of

0.8 and above in which Bayesian only recovers correct

nodes.

As the number of analysed characters increases, the

accuracy and resolution of all methods also increase,

irrespective of tree symmetry. Despite this, the Maximum

likelihood and Bayesian implementations of the Mk model

still outperform Parsimony when a large number of char-

acters are analysed. This general trend of improved accu-

racy and resolution should be expected from the stochastic

models as they are statistically consistent, but the relatively

accurate performance of Parsimony is less expected. These

results suggest that no matter which method is applied to

a dataset, it should be a goal for morphological datasets to

include as many characters as possible if the most accurate

estimates of topology are to be obtained.

Here, a stochastic Markov process was used to simulate

categorical character data, facilitating a comparison of the

efficacy of probabilistic (Bayesian, Maximum Likelihood)

and non-probabilistic models (parsimony) of evolution

when morphological data are analysed. To ensure that

our data generation process did not favour the probabilis-

tic Mk model we enforced violation of the assumptions

of this model in the simulation procedure, resulting in a

suitable level of model misspecification when those data

were analysed with the Mk model. However, it could be

argued that the use of a stochastic Markov process to

generate data will bias results toward the preference for

the use of a stochastic Markov model for phylogenetic

inference. Further, the stochastic process used for simula-

tion assumes that the evolutionary rates of different char-

acters are independent, in addition to assuming that the

rates of evolution at different characters across the tree

are proportional. However, the stochastic model we

employ to generate data does produce realistic distribu-

tions of morphological characters at the tips of the tree,

demonstrating that this approach to simulation is valid.

Also, there is no obvious model for the evolution of dis-

crete morphological characters.

Comparison of support on Bayesian and Maximum

Likelihood phylogenies

We used results from simulation analyses to re-assess the

empirical phylogenies: we presented topologies on which

nodes with only 80% posterior probabilities or bootstrap

support are presented (Figs 6, 7). For most analyses, the

consensus trees bring congruence between the Bayesian

and Maximum Likelihood Mk implementations, which is

similar to the pattern seen with the simulated data (Brown

et al. 2017). For one of the larger matrices analysed (Luo

et al. 2015), resolving only nodes with over 80% support

has little influence on the overall conclusions as Haramiya-

via is still recovered outside multiturberculates in the

analyses performed using the Bayesian and Maximum

Likelihood implementations of the Mk model. These clades

cannot be distinguished in the parsimony analyses. Similar

results are seen in the analyses of the dataset from Hilton

& Bateman (2006): no method supports the anthophyte

hypothesis, but parsimony does not separate pteridosper-

mous taxa from gymnosperms, seed ferns and angiosperms

(O’Reilly et al. 2017, fig. S1). Presenting only nodes with

80% support brings congruence between all methods for

the re-analyses of Nesbitt et al. (2013) and Sutton et al.

(2012). Nyasasurus from Nesbitt et al. (2013) is placed in a

polytomy with basal dinosaurs in Bayesian, Maximum

Likelihood and parsimony analyses (Fig. 7). Bayesian and

Maximum Likelihood can only resolve three nodes, and

parsimony only one node, from the reanalysis of the data-

set from Sutton et al. (2012) in which no method can

resolve the position of Kulindroplax (Fig. 6).

Differences between the Maximum Likelihood and Bayesian

Mk implementations

Difference in performance between Maximum Likelihood

and Bayesian inference, when poorly supported nodes are

TABLE 3 . Resolution of the three methods on empirical trees

before and after nodes with less than 50% support are collapsed.

Bayesian Maximum

Likelihood

Parsimony

Sutton

(34 taxa,

48 characters)

Optimal

tree

7 32 17

Collapsed

tree

7 8 6

Hilton

(48 taxa,

82 characters)

Optimal

tree

28 46 38

Collapsed

tree

28 15 13

Nesbitt

(82 taxa, 413

characters)

Optimal

tree

72 80 72

Collapsed

tree

72 63 47

Luo (114 taxa,

497 characters)

Optimal

tree

92 112 109

Collapsed

tree

92 69 69
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collapsed, is surprising given that the primary difference

between these methods is the scaling of the likelihood by

the prior distribution in the Bayesian implementation. It

is therefore possible that the prior distribution placed on

the branch lengths may be a cause of difference in perfor-

mance. As topology and branch lengths are jointly

estimated in the probabilistic framework it is entirely pos-

sible that the prior distribution placed on the branch

lengths is influencing the estimation of topology. A fur-

ther potential cause of discrepancies between Maximum

Likelihood and Bayesian inference is the partitioning of

characters by the number of possible states they exhibit.

MrBayes automatically partitions characters by the num-

ber of implied character states, constructing a transition

matrix of the appropriate dimensions for those characters.

Conversely, RAxML appears to construct a single transi-

tion matrix that is applied to all characters, which may be

a contributing factor to differences between these meth-

ods. These differences may also be caused by errors intro-

duced by the efficiency of the algorithm applied to search

for the Maximum Likelihood tree or the rapid bootstrap

method used to calculate support for nodes in the Maxi-

mum Likelihood topology estimate.

CONCLUSIONS

When estimating phylogenetic relationships from mor-

phological data, the parsimony criterion is not as accurate

as the stochastic Mk model, whether clade support values

are considered or not. In contrast to most previous analy-

ses, and following Brown et al. (2017), we find that when

accounting for clade support values the Maximum Likeli-

hood implementation of the Mk model achieves similar

overall accuracy to the Bayesian implementation of the

Mk model, albeit with Maximum Likelihood producing

less-resolved phylogenies. Our simulations indicate that

the Bayesian implementation of the Mk model estimates

higher support for correct nodes compared to Maximum

Likelihood. Therefore, we advocate the Maximum Likeli-

hood or Bayesian implementations of the Mk model, in

place of parsimony, for phylogenetic analyses based on

discrete morphological data.
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