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Molecular clock analyses estimate that crown-group animals began diversify-

ing hundreds of millions of years before the start of the Cambrian period.

However, the fossil record has not yielded unequivocal evidence for animals

during this interval. Some of the most promising candidates for Precambrian

animals occur in the Weng’an biota of South China, including a suite of tubular

fossils assigned to Sinocyclocyclicus, Ramitubus, Crassitubus and Quadratitubus,

that have been interpreted as soft-bodied eumetazoans comparable to tabulate

corals. Here, we present new insights into the anatomy, original composition

and phylogenetic affinities of these taxa based on data from synchrotron radi-

ation X-ray tomographic microscopy, ptychographic nanotomography,

scanning electron microscopy and electron probe microanalysis. The patterns

of deformation observed suggest that the cross walls of Sinocyclocyclicus
and Quadratitubus were more rigid than those of Ramitubus and Crassitubus.
Ramitubus and Crassitubus specimens preserve enigmatic cellular clusters at

terminal positions in the tubes. Specimens of Sinocyclocyclicus and Ramitubus
have biological features that might be cellular tissue or subcellular structures

filling the spaces between the cross walls. These observations are incompatible

with a cnidarian interpretation, in which the spaces between cross walls are

abandoned parts of the former living positions of the polyp. The affinity of

the Weng’an tubular fossils may lie within the algae.
1. Introduction
Molecular clock analyses estimate that metazoans diversified in the Ediacaran

or Cryogenian tens or hundreds of millions of years before the beginning of the

Cambrian [1,2]. While the fossil record is undoubtedly incomplete, no fossil

data unequivocally support these predictions. Fossils from the classical Ediacaran

biota are notoriously difficult to interpret. Based on the available evidence, some

ediacarans might best be interpreted as total-group animals [3–5], but these

interpretations are not sufficiently robust to substantiate the presence of crown-

group animals at this time. The Weng’an biota [6] from the Doushantuo Formation

of South China has yielded a suite of Early Ediacaran microfossils described as

embryonic [7] and adult [8] animals, including putative stem-group metazoans

[9], sponges [10,11], cnidarians [12] and bilaterians [8,13,14]. These are found

alongside fossils assigned to acritarchs [15,16] and algae [17]. However, all of

the claims for animal affinity have been contested [18–23], and none can currently

be considered to represent undisputed animal fossils [24]. A suite of tubular fossils

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2015.1169&domain=pdf&date_stamp=2015-07-15
mailto:john.cunningham@bristol.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://rspb.royalsocietypublishing.org/


rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20151169

2

 on July 16, 2015http://rspb.royalsocietypublishing.org/Downloaded from 
[25–27] from the Doushantuo, assigned to the genera

Sinocyclocyclicus, Ramitubus, Crassitubus and Quadratitubus, are

rare examples of widely accepted Precambrian metazoans

[28–30]. These fossil taxa have been interpreted as a closely

interrelated group of soft-bodied animals comparable to tabu-

late corals, and they have been marshalled as evidence for

cnidarian-like eumetazoans at this time [19,25]. However,

alternative interpretations have been suggested for these tubular

taxa, including algae [31,32] and cyanobacteria [27]. Testing

among these competing interpretations requires the resolution

of key uncertainties concerning the anatomy of the tubular

taxa, including the nature of the cross walls, critical to the

cnidarian interpretation, and whether their internal compart-

ments represent the boundaries between cells or between

some other kind of structure. To this end, we use synchrotron

radiation X-ray tomographic microscopy (SRXTM), ptycho-

graphic X-ray computed tomography (PXCT), imaging of

back-scattered electrons (BSE) and electron probe microanalysis

(EPMA) to elucidate the anatomy and original composition of

these tubular taxa. We assess the implications of these new

data for understanding their phylogenetic affinity.
2. Material and methods
Specimens were extracted from rock samples from the Upper

Phosphorites of the Datang Quarry, Weng’an, Guizhou Province,

China (see [16] for a description of the stratigraphic context). The

carbonate constituents of the samples were dissolved in ca 10%

acetic acid and the apatite-preserved fossils were recovered

from the resulting residues by manual sorting under a binocular

microscope. Figured specimens are housed at the Swedish

Museum of Natural History, Stockholm (X 5322–X 5330). All

tomographic measurements were carried out at the Swiss Light

Source, Paul Scherrer Institute, Switzerland. The SRXTM exper-

iments [33,34] were conducted at the X02DA (TOMCAT)

beamline and the PXCT experiments [35] at the X12SA (cSAXS)

beamline [35]. All specimens were examined using SRXTM.

Images were recorded at 1501 stepwise increments through a

rotation of 1808 at a beam energy of around 17.5 keV. Specimens

were scanned with a 20� objective, resulting in voxel dimensions

of 0.325–0.37 mm. The projection images were processed and

rearranged into dark- and flatfield-corrected sinograms, after

which they were reconstructed using a gridding procedure and

a highly optimized routine based on the Fourier transform

method [36]. One specimen (X 5324) was also examined using

PXCT, which enables nanoscale-resolution tomography. The

PXCT measurement was carried out at 8.7 keV photon energy

using an interferometrically controlled three-dimensional scan-

ning stage [37], the sample was scanned across a coherent

X-ray beam with a field of view of 150 � 15 mm at 360 angular

orientations that spanned a range from 08 to 1808. At each scan-

ning point, diffraction patterns were measured with an Eiger

detector [38] with a 0.1 s exposure time. Ptychographic recon-

structions were carried out using the difference map algorithm

with a maximum-likelihood refinement [39,40], and tomographic

synthesis was carried out with projection alignment and post-

processing as described in [41,42]. The PXCT data have voxel

dimensions of 0.044 mm. All tomographic data were analysed

using AVIZO software. Two specimens (X 5326 and X 5330)

were examined using BSE and EPMA using the methods

described in [23]. We selected examples from each of the four

tubular genera described in detail by Liu et al. [25], which are

primarily distinguished by differences in overall morphology,

in the nature of their cross walls, and in the presence or absence

of a sheath.
3. Results
(a) Sinocyclocyclicus
Sinocyclocyclicus consists of a straight, non-branching tube with

a circular cross section. It has complete and incomplete cross

walls that alternate with one another [25]. The cross walls are

preserved in a high X-ray attenuation phase (figure 1), with

similar chemical properties to those found in high-attenuation

phases in other Doushantuo specimens by [23] (electronic sup-

plementary material, figure S1a). Some of the Sinocyclocyclicus
specimens that we have examined have numerous examples

of brittle fracture of the cross walls (figure 1a,b,e; electronic sup-

plementary material, figure S2a) as well as displacement along

the plane of these cross walls (figure 1b, arrowhead). Examples

of organic degradation (as inferred from cross walls that are

truncated by irregular regions of void-filling cement) or of

ductile deformation without fracture are rarely observed in

this taxon.

Our SRXTM and PXCT data reveal previously unknown fea-

tures in the anatomy of Sinocyclocyclicus that occupy spaces

between the cross walls (figure 1g–k). These regular structures

are ovoid to sub-cuboid in shape and measure around

5–10 mm in diameter. The interiors of the structures are minera-

lized in a low X-ray attenuation phase that is typical of soft-tissue

preservation [23,43], surrounded by a high-attenuation phase.

In the central part of one specimen, a single row of these struc-

tures fills the space between successive complete cross walls

(figure 1h–k). Manual computed tomographic characterization

of the three-dimensional morphology of the component struc-

tures between adjacent cross walls (figure 1i– j) based on the

high-resolution PXCT data shows their regular size and shape.

Towards the edges, smaller structures ca 2 mm in diameter fill

the spaces between the incomplete cross walls (figure 1h).
(b) Quadratitubus
Quadratitubus is similar to Sinocyclocyclicus in having a

straight non-branching form and alternating complete and

incomplete cross walls. It differs, however, in having a quad-

rangular (rather than approximately circular) cross section

[25]. Quadratitubus shows a similar pattern of deforma-

tion to Sinocyclocyclicus. Brittle deformation is common

(figure 1c,d,f ), but ductile deformation without fracture is

rarely observed. Likewise, evidence for organic degradation

of the cross walls is rare (the void in the specimen in

figure 1c,d,f is the result of a pyrite trail). Our three-dimensional

data support the anatomical description presented by Liu et al.
[25] and do not provide additional information.
(c) Ramitubus
Ramitubus (figure 2) has a circular cross section and it is the

only one of the four tubular genera to display branching. It

is also distinct in that it has complete cross walls only,

which is in contrast to the alternating complete and incom-

plete walls seen in the other taxa [25]. The spacing between

the cross walls is typically 10–15 mm, but some regions exhi-

bit a series of compartments of lower than average height

(ca 7 mm) in a row (figure 2b, arrowhead). Ramitubus shows

abundant evidence of both ductile deformation of specimens

(figure 2a) and cross walls (figure 2b,e), and for organic

degradation (figure 2c,d,f; electronic supplementary material,

figures S1b and S2b). We found no evidence of brittle

http://rspb.royalsocietypublishing.org/
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Figure 1. SRXTM images of the tubular fossils Sinocyclocyclicus and Quadratitubus. (a) SRXTM surface model of Sinocyclocyclicus, X 5322; (b) longitudinal SRXTM slice
through the specimen in (a) showing brittle deformation of the cross walls, the arrowhead indicates displacement along the plane of the cross wall, the region in the box is
enlarged in (e); (c) surface model of Quadratitubus, X 5323; (d ) longitudinal SRXTM section through the specimen in (c) showing brittle deformation, the arrowhead
indicates a void created by pyrite dissolution, the region in the box is enlarged in ( f ); (e) higher magnification image of boxed region in (b); ( f ) higher magnification image
of boxed region in (d ); (g) SRXTM surface model of a specimen of Sinocyclocyclicus with ovoid to sub-cuboid structures preserved in the spaces between the cross walls,
X 5324; (h) longitudinal SRXTM slice of the specimen in (g); (i) reconstruction based on PXCT data showing the arrangement of structures between two successive cross
walls; ( j ) reconstruction in (i) shown in oblique view; (k) transverse SRXTM slice of the specimen in (g), the arrowheads indicate the positions of two successive cross walls.
Scale bars: (a,b) 120 mm; (c,d ) 143 mm; (e) 38 mm; ( f ) 40 mm; (g – i) 58 mm; ( j,k) 32 mm. (Online version in colour.)
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deformation of cross walls, though an incomplete transverse

separation associated with ductile deformation in one specimen

indicates tearing of the outer wall (electronic supplementary

material, figure S3). In addition to the deformation observed,

there are some prominent pocket-like structures around

50 mm deep created by down-folding of the central regions of

some of the cross walls (figure 2l, arrowhead). Specimens

can be deformed such that the cross section is up to twice as

long as broad (electronic supplementary material, figure S3).

This suggests greater deformation than in Sinocyclocyclicus
and Quadratitubus, which generally have cross sections that

are close to the circular or quadrangular sections that they are

assumed to have had in life (figure 1c,k).

After branching, the internal structure can change

(figure 2g–k). In one specimen, the cross walls become concave

upward in the region after the branching point (figure 2h,i,k),

rather than straight and perpendicular to the tube length.

Here, the cross walls are mainly preserved in a low-attenuation

phase, especially towards the centre of the specimen and

towards the ends of the branches (figure 2h,i,k); this contrasts

http://rspb.royalsocietypublishing.org/
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Figure 2. SRXTM images of the tubular fossil Ramitubus. (a) SRXTM surface model of Ramitubus, X 5325, showing ductile deformation of the tube; (b) longitudinal
SRXTM section through the specimen in (a) showing ductile deformation of the crosswalls, the arrowhead indicates a region where there are several successive
compartments of lower than average height, the region in the box is enlarged in (e); (c) SRXTM surface model of Ramitubus, X 5326; (d ) longitudinal SRXTM section
through the specimen in (c) showing organic degradation of the cross walls, the region in the box is enlarged in ( f ); (e) higher magnification image of boxed region
in (b); ( f ) higher magnification image of boxed region in (d ) showing cross walls truncated by an irregular region of void-filling cement; (g) SRXTM surface model of
Ramitubus, X 5327; (h) longitudinal SRXTM section through the specimen in (g), note the high-attenuation (bright), nearly spherical structures towards the end of
each branch; (i) longitudinal section through the specimen in (g) at a different level, note the change in the pattern of the cross walls after branching; ( j ) transverse
SRXTM section through the specimen in (g); (k) higher magnification SRXTM section of the specimen in (g) showing finer layers between the cross walls, the
arrowhead shows a region where these layers are made up of sub-angular structures; (l ) longitudinal SRXTM section through the Ramitubus specimen in (a),
the arrowhead indicates down-folding of a cross wall that results in a prominent pocket-like space towards the centre of one of the specimen. Scale bars:
(a,b) 183 mm; (c,d ) 126 mm; (e) 48 mm; ( f ) 40 mm; (g – i) 89 mm; ( j ) 36 mm; (k) 36 mm; (l ) 64 mm. (Online version in colour.)
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Figure 3. SRXTM images of the tubular fossil Crassitubus. (a) SRXTM surface model of Crassitubus specimen X 5328; (b) longitudinal SRXTM slice through the
specimen in (a), the region in the box is enlarged in (d ); (c) SRXTM surface model of the specimen in (a) showing the exterior of the specimen in the
region of the structure shown in (d ), note that the former positions of cross walls are visible; (d ) higher magnification image of boxed region in (g) showing
a nearly spherical structure composed of sub-angular objects close to the end of the tube; (e) SRXTM surface model of Crassitubus specimen X 5329; ( f )
SRXTM surface model of the specimen in (e) in a different orientation; (g) SRXTM slice through the specimen in (e), the boxed region is enlarged in (h);
(h) higher magnification image of the boxed region in (g), arrowhead indicates a similar structure to that shown in (d ). Scale bars: (a,b) 137 mm;
(c) 62 mm; (d ) 26 mm; (e – g) 200 mm; (h) 50 mm. (Online version in colour.)
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with other regions of the specimen where they are preserved in

a high-attenuation phase (e.g. figure 2k, left hand margin).

Between adjacent cross walls in the branches there are three to

four finer walls, which are preserved in a low-attenuation

phase. In some regions, the spaces between the finer walls are

filled by a single layer of sub-angular structures (figure 2k,

arrowhead). Towards the ends of both branches of the same

specimen, there are nearly spherical regions that are filled

with high-attenuation void-filling mineral growth (figure 2h).

These are approximately 100 mm in diameter in each of the

branches and lie around 50–100 mm from the end of the tube

in each case. The structures clearly represent the position of

former voids that have been filled by diagenetic mineralization.
The similar size, shape and position of the structures in the

two tubes suggest that these voids might preserve the topology

of structures of a biological origin. This is also supported by

the similarities in size, shape and position to structures in

Crassitubus (discussed below). The similarities between the

structures in the two tubes suggest that they were formed in a

coordinated way.

(d) Crassitubus
Crassitubus is characterized by its curved, non-branching

form as well as by an enveloping sheath that bears a longitu-

dinal ridge (figure 3). Our data show that some specimens

have at least two longitudinal ridges, rather than the single

http://rspb.royalsocietypublishing.org/
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ridge seen in previously described material (figure 3e). Like

Ramitubus, Crassitubus frequently exhibits evidence of organic

decay and ductile deformation, and can be twisted and

knotted [25]. There is no evidence of brittle fracture. In one

of the specimens, there is an ovoid structure at one end of

the tube that measures approximately 100 mm in the maxi-

mum dimension (figure 3a–d ). It is composed of facetted

structures that are up to 5 mm in diameter and that in some

instances are organized into diads or tetrads, suggesting that

they were formed by division. For these reasons, we interpret

the structures as cellular compartments. It is possible that

this is a coincidental, and not a biological, association between

the cellular clusters and the Crassitubus organism, particularly

as no internal cross walls are visible in this specimen,

suggesting that it might be poorly preserved. The original pos-

itions of cross walls are visible on the outside of the specimen,

both in the region of the cluster (figure 3c) and elsewhere.

These walls must have been incomplete if they were to have

allowed space for the cell cluster (such a pattern of cross

walls is seen in fig. 2d of [19]). However, the presence of a simi-

lar structure in the same position of a second Crassitubus
specimen (figure 3e–h, arrowhead in figure 3h) gives some

weight to the argument that the structures are part of the

organism’s biology.
4. Evidence for original composition
We observed numerous examples of brittle deformation in

Sinocyclocyclicus and Quadratitubus. As Liu et al. [25] have

observed, this does not necessarily indicate that the organism

was mineralized in life. The fractures could have occurred

after diagenetic mineralization of a soft tissue: brittle fracture

is seen occasionally in the embryo-like fossils from Doushan-

tuo, which are accepted to have been non-mineralized.

Moreover, Liu et al. [25] have argued that the presence of

twisted or knotted specimens and of organic degradation

suggests that the tubular fossils were probably not minera-

lized in life. However, we observed only rare examples of

either of these phenomena in Sinocyclocyclicus or Quadratitu-
bus, but they were common in Ramitubus and Crassitubus,

and all of the figured examples in Liu et al. [25] are from

the latter two taxa (e.g. their pl. 2, fig. 3; pl. 6, figs 18–19,

21; pl. 7, fig. 16; pl. 8, figs 8–9 for deformed specimens and

pl. 8, figs 6–7 for organic degradation). This contrast between

the tubular genera indicates that the Sinocyclocyclicus and

Quadratitubus specimens were prone to brittle fracture at

some point when the other taxa were not. An interpretation

that these taxa had different taphonomic or diagenetic his-

tories is unlikely given that the fossils were recovered from

the same unit of the Doushantuo Formation [25]. A second

possibility is that Sinocyclocyclicus and Quadratitubus were

mineralized earlier in diagenesis. This might be explained if

these taxa had walls that were thicker or more rigid or

if they were composed of a substance more readily predis-

posed to mineralization. A third possibility is that they

were mineralized during life. The fact that rare specimens

of Sinocyclocyclicus and Quadratitubus have ductile defor-

mation of the cross walls indicates that they may have been

non-mineralized in life. However, it is also possible that

they were lightly biomineralized like taxa such as Cloudina
and Sinotubulites, which also show evidence for both brittle

and ductile deformation but are generally considered to
have been mineralized to some extent in life [44]. In any

case, it seems that the cross walls of Sinocyclocyclicus and

Quadratitubus were more rigid than those of the other taxa.
5. Phylogenetic affinities
It seems likely that the four tubular genera are closely related

to one another, although it is difficult to devise a definitive

test of this hypothesis. Sinocyclocyclicus and Quadratitubus
are particularly alike, having similar construction and mech-

anical properties. Ramitubus and Sinocyclocyclicus both have

similar fine structures between the cross walls, indicating a

similar mode of construction and perhaps a close phylo-

genetic relationship. Crassitubus has a distinctive sheath

with longitudinal ridges on the exterior, but the similarities

between its alternating complete and incomplete cross walls

and those of Sinocyclocyclicus and Quadratitubus also suggest

a close relationship.

The competing hypotheses of affinity for the tubular fos-

sils make different predictions about what lies in the spaces

between the cross walls. The first possibility to consider is

that the structures between the cross walls are not an original

aspect of the anatomy of the tubular organisms but, rather,

taphonomic or diagenetic structures that mould the spaces

between cross walls. There are a number of different pro-

cesses that might create such moulds, but none provides a

good interpretation of the structures observed. Clumps of

degraded organic material occur in some Doushantuo speci-

mens, but they do not have the regular and evenly layered

arrangement of the structures in question. Similarly, void-

filling apatite mineralization is common in the deposit [23]

but cannot explain this regular pattern of structures between

the cross walls. Hydrothermal veining can produce a pattern

that is superficially similar to that observed in the fossils, but

this explanation is hard to reconcile with the regularity of the

structures or the finely crystalline nature of the interior of

the structures, which is similar to that known to preserve cells

in this deposit [23]. Fracture is common in Sinocyclocyclicus but

it is not manifest in this kind of pattern. In addition, it would

be expected that such veins would commonly cut the cross

walls of the organism. While there are a couple of examples

where these structures appear to continue over the cross walls

(figure 1h), their rarity suggests that this might be better

explained by chance alignment of biological structures. An

interpretation of the low-attenuation structures as dolomite crys-

tals, which occur in some Doushantuo fossils, cannot account for

the structures. Dolomite crystals are uniformly grey in tomo-

grams and completely different in appearance to the structures

in question. It is also unlikely that the structures preserve a

microbial infestation of the organisms. This scenario could possi-

bly account for the structures in Sinocyclocyclicus, but not those in

Ramitubus, which are organized in regular layers. Furthermore,

infesting bacteria do not typically show the facetted morphology

of the structures seen in the fossils, even when they form very

dense biofilms that replicate subcellular anatomy (e.g. fig. 7 in

[45]). The structures are therefore best interpreted as part of the

anatomy of the tubular fossils. They most likely represent

either cells or subcellular structures, as discussed below.

(a) Cyanobacteria affinity
Comparisons have been drawn between the tubular taxa,

especially Sinocyclocyclicus, and cyanobacteria [27]. Some

http://rspb.royalsocietypublishing.org/
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cyanobacteria have alternating complete and incomplete cross

walls resembling those seen in Sinocyclocylicus (e.g. Oscillatoria,

see fig. 4 of [27]). In cyanobacteria, cross walls occur as bound-

aries between cells, and partial cross walls occur as cells are

undergoing division. Under this interpretative model, the

compartments in the fossils would be interpreted as cells.

This is difficult to reconcile with the rigid and possibly even

mineralized nature of the walls in Sinocyclocyclicus and

Quadratitubus. In addition, it would require the taxa with

incomplete cross walls to be preserved only when they are

undergoing cell division. The structures within these com-

partments would have to be interpreted as subcellular

features of cyanobacterial anatomy. Cyanobacteria have few

comparable subcellular structures, however, as they lack

organelles and the structures they do possess in the cytoplasm

tend to be much smaller. For example, bacterial micro-

compartments are usually around 100–200 nm in diameter.

It is unlikely that the structures formed by degradation of

cytoplasm. Cells containing degraded cytoplasm in other

specimens in the deposit have a characteristic clotted fabric

throughout [9], whereas the compartments in this specimen

are occupied by distinct ovoid structures. Moreover, there

are additional lines of evidence that cast doubt on a cyanobac-

terial interpretation for these fossils. The compartments have

a much larger diameter—up to 270 mm in Sinocyclocyclicus and

625 mm in Ramitubus [25]—than living cyanobacteria, which

rarely exceed 50 mm in diameter. They have a much smaller

height to width ratio than modern cyanobacterial cells [25],

though there is a general trend in extant cyanobacteria for

wider cells to be thinner [46]. The cellular clusters present

in Crassitubus and, perhaps, Ramitubus, represent a level of com-

plexity not seen in bacteria; if they are a part of the organism’s

anatomy, they would also be incompatible with this inter-

pretation. Finally, the cyanobacterial interpretation implies

growth by intercalation, which is inconsistent with evidence

for terminal growth, at least in Ramitubus [25].
(b) Metazoan, eumetazoan or cnidarian affinity
A second prominent hypothesis is that the tubular taxa are

stem-group eumetazoans or stem-group cnidarians. This is

based largely on the comparison between the cross walls

and the tabulae of the tabulate corals [12,19,25]. In addition,

if the Doushantuo tubular taxa are indeed closely related

to one another, then the combination of characters in the

four genera—tetraradial symmetry (in Quadratitubus), a

longitudinal ridge (in Crassitubus) and cross walls (in all

four genera)—can be used to add some support for a cnidarian

affinity [25]. Although none of these characters are unique to cni-

darians, they are all found in this group and are relatively rare in

other candidate groups like algae and cyanobacteria. Ramitubus
has been considered to be the strongest candidate animal of the

four genera [25] as it has regular dichotomous branching and

cross walls, as well as possible nested side walls in some speci-

mens [6]. However, the structures we have observed between

the cross walls of Sinocyclocyclicus and Ramitubus are difficult

to reconcile with a cnidarian body plan. The tabulae of tabulate

corals, to which the cross walls have been compared, represent

the successive bases of the chamber in which the polyp lived,

with the polyp living above the last-formed cross wall. This

model therefore predicts that the chambers will contain

enough space to house the polyp and that chambers that are

no longer occupied will be empty or filled with diagenetic
cement, as seen in tabulate corals. For this reason, the presence

of either cells or subcellular inclusions between the walls

is incompatible with the coral interpretation. Alternative

interpretations of the structures between the cross walls of

Sinocyclocyclicus as degraded cytoplasm, considered unlikely

for reasons outlined above, would also be incompatible with

the cnidarian model for the same reason. An interpretation of

these structures as infesting bacteria, again considered unli-

kely, would also be hard to reconcile with a cnidarian model.

There would be little of nutritional value in this region, and

for this reason infesting and symbiotic microorganisms are clo-

sely associated with the polyp in living cnidarians [47]. An

interpretation of these structures as artefacts produced by

taphonomic or diagenetic processes could be compatible with

this interpretation but, as discussed above, this model cannot

account for the key features of the structures.

A position elsewhere in Metazoa is unlikely because in ani-

mals with complete cross walls, the organism tends to live in the

final chamber. If the spherical clusters of cells are part of the

anatomy of the organism, they could potentially be interpreted

as an organism that added successive chambers in a mode of

growth comparable to that of tabulate corals. However, such

a mode of growth is difficult to reconcile with the biological

structures preserved in the spaces between cross walls. The cel-

lular clusters in Crassitubus must have been in contact with

several increasingly incomplete cross walls at the same time,

which is also in contrast to a cnidarian growth pattern. More-

over, these clusters bear no resemblance to extant cnidarian

polyps. Rejection of crown-Cnidaria characters does not allow

for a stem-Cnidaria affinity as there remains no evidence for a

total-group Eumetazoa or animal affinity.
(c) Algal affinity
Another possibility is that the tubular taxa have an affinity with

one of the various clades of algae. Under this model, one poss-

ible interpretation of the compartments would be as cells, and

the structures within could represent preserved organelles,

such as chloroplasts or lipid droplets, or other intracellular

structures, such as starch grains. The pyrenoids within some

chloroplasts can bear a particularly close resemblance to the

fossil structures, though pyrenoids are typically arranged per-

ipherally within cells to avoid self-shading rather than

throughout the volume. It is worth noting that multiple intra-

cellular inclusions have been observed in some embryo-like

specimens from Doushantuo [9,23,43] and interpreted as

lipid droplets or yolk granules. These are preserved in a low

X-ray attenuation phase that is broadly similar to that of the

present structures. This suggests that a subcellular interpret-

ation is plausible, though it is difficult to distinguish between

the different possible interpretations of the structures.

Alternatively, the structures themselves could be interpreted

as preserved algal cells, which is consistent with their regular

organization into single layers (in Sinocyclocyclicus) or multiple

layers (in Ramitubus). The structures also have a mode of preser-

vation closely comparable to undisputed cells in the same biota.

Cells in some Doushantuo algal specimens are preserved in a

similar style, with a low-attenuation phase in the cell interior,

surrounded by a high-attenuation phase that fills the spaces

between the cells (e.g. fig. 2a of [23]). This high-attenuation

phase between the structures has the characteristics of late

stage mineralization and most likely represents a secondary

diagenetic mineralization, rather than mineralization that
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replaces an original biological structure such as a cell wall. The

fossilized ‘wall’ is not of constant thickness, but rather fills

spaces between the structures.

Although we consider that the structures are best inter-

preted as part of the anatomy of the tubular organisms, we

cannot currently distinguish between a cellular interpretation

and various subcellular interpretations, not least because

there are apparent difficulties with each interpretation. The

problems with an interpretation of the compartments as

cells are discussed above in connection with a possible cyano-

bacteria interpretation. In particular, there are difficulties

understanding the rigid nature of walls in cells undergoing

division and why cells would only be preserved when part-

way through cell division in some taxa. On the other hand,

there are also some difficulties with an interpretation of the

structures within the compartments as cells. We know of no

extant taxa in which undifferentiated cells are enclosed

within compartments, which they presumably created.

Nonetheless, there are broadly analogous algal taxa

regardless of how the structures between the cross walls are

interpreted, although it is difficult to place the fossils in any

particular group with confidence. Under an interpretation of

these structures as cells, some red algae, such as the coralline

alga Amphiroa [48], provide a possible comparison as they pro-

duce cross walls between rows of cells. However, they differ

from Sinocyclocyclicus in that their cell walls are mineralized

in their entirety. As the structures between the cross walls of

Sinocyclocyclicus are unlikely to have been mineralized, it

seems more likely that the walls were produced by the organ-

ism. If, on the other hand, the compartments are interpreted as

individual cells, then green algae such as Spirogyra provide

an analogue, as the pyrenoids in their chloroplasts can form

closely packed structures that resemble those of the fossils.
6. Conclusion
We find that the patterns of deformation observed in the

Doushantuo tubular fossils suggest that the cross walls of

Sinocyclocyclicus and Quadratitubus were more rigid than those

of Ramitubus and Crassitubus. Ramitubus and Crassitubus speci-

mens preserve enigmatic cellular clusters at terminal positions
in the tubes. Specimens of Sinocyclocyclicus and Ramitubus
have biological features that might be cellular tissue or subcel-

lular structures filling the spaces between the cross walls.

Either interpretation of these features is incompatible with an

interpretation as a cnidarian-like animal.

The Doushantuo tubular fossils are rare examples of taxa

that have been widely accepted as Neoproterozoic eumetazo-

ans. However, the new data presented here do not support

this affinity. As a result, these fossils do not reduce the gap

between molecular clock predictions for the divergence of ani-

mals and the fossil evidence. Resolving this issue will require

improvements in prediction of the nature of early animals

based in comparative anatomy and comparative developmental

biology, and in resolving phylogenetic conundrums such as

monophyly versus paraphyly of sponges, and the phylogenetic

position of ctenophores. However, devising improved tests of

the affinities of fossils that remain in contention as the earliest

animals will also be vital.
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