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Highlights
WGD events continue to be discov-
ered throughout plant systematic
diversity as a consequence of genome
sequencing programs.

The absolute timing of WGD events
remains poorly constrained and poorly
understood, but many hypotheses
regarding the role of WGD in plant
evolution depend on precise
estimates.

The role of WGD in facilitating diversi-
Whole-genome duplication (WGD) is characteristic of almost all fundamental
lineages of land plants. Unfortunately, the timings of WGD events are loosely
constrained and hypotheses of evolutionary consequence are poorly formu-
lated, making them difficult to test. Using examples from across the plant
kingdom, we show that estimates of timing can be improved through the
application of molecular clock methodology to multigene datasets. Further,
we show that phenotypic change can be quantified in morphospaces and that
relative phenotypic disparity can be compared in the light of WGD. Together,
these approaches facilitate tests of hypotheses on the role of WGD in plant
evolution, underscoring the potential of plants as a model system for investi-
gating the role WGD in macroevolution.
fication has a strong theoretical basis
but remains to be rigorously tested,
and WGD in species-poor lineages
cannot be ignored.

WGDas a driver of plant morphological
diversity is an appealing hypothesis,
but requires a framework which can
quantify morphological variation
between lineages and through time.
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Whole-Genome Duplication
WGDencompassesmultipleprocesses that lead to the formationof apolyploidorganismwith three
ormoresetsof thebasechromosomenumber. It hasbeen invokedasacauseofmacroevolutionary
change [1], explainingeverything fromextinction resistance to fundamental evolutionary innovation.
WGD has been proposed as a driver of diversity [2,3], herbivore interactions [4], geographic
expansions [5], climatic niche shifts [6], and of facilitating lineage longevity [7]. Clustering of
WGD events around the Cretaceous–Paleogene (K–Pg) interval has led to the hypothesis that
genome duplication may have facilitated evolutionary success in the wake of the mass extinction
event at the end of the Cretaceous [8,9] (Box 1). Equally, however, it is possible that the extensive
history of WGD in plant evolution is incidental or inconsequential, and there are examples, such as
mosses and horsetails [7,10], where a macroevolutionary-scale phenotypic impact is not evident.
AncientWGDevents (paleopolyploidy)firstappeared tobe rare [11],butnewlysequencedgenomes
have revealed duplication in an increasing diversity of plant lineages [12,13]. However, with few
exceptions, it appears that most of the hypothesized macroevolutionary outcomes have neither
been tested nor formulated as hypotheses that are readily testable, despite the diversity of
comparative methods that are available for facilitating such tests. There are multiple emerging
modelsexplaininghowcomplexityandnoveltymayarise throughgenomeduplication [14],although
fundamental questions remain as to why the outcomes of WGD are so disparate among lineages
and whether the nature of the ploidy event influences the outcome (Box 2). Tests are necessary to
quantify the macroevolutionary change in the wake of WGD, or else WGD risks becoming a
phenomenon that explains everything and, therefore, nothing.

WGD has occurred across the breadth of eukaryote phylogeny [15–18], but themajority of WGD
events have occurred within land plants (Embryophyta) (Figure 1). As such, plants provide very
many natural experiments fromwhich itmay bepossible to develop a general theory on the role of
WGD in macroevolution. Patterns of diversification among extant taxa have pointed towards a
scenario of rarely successful polyploids [19,20].However, allmembersof themostdiverse lineage
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Glossary
Diploidization: sometimes termed
fractionation, this is the period
following WGD whereby through
rearrangement, silencing, and loss of
DNA the genome returns to a diploid
expression pattern.
Morphospace: an n-dimensional
multivariate space describing
phenotypes, where points represent
taxonomic units and the distances
between them their (dis)similarities.
Neofunctionalization: following
gene duplication, one copy of the
gene takes on a novel function while
the other copy continues to perform
the previous function.
Paralogs, ohnologs, and
homologs: two genes related by
descent, typically with similar
sequences, are homologs. If they
share a 1:1 relationship between
species, they are orthologs. If they
deviate from this 1:1 relationship as a
result of a duplication event, they
become paralogs. Paralogs that have
derived specifically from a WGD
event are termed ohnologs, after
Susumu Ohno.
Subfunctionalization: following
gene duplication, each duplicate
performs part of the original function,
and in combination both maintain the
original function of the gene.

Box 1. WGD and the K–Pg Boundary

ThedistributionofWGDeventsbothacrossplantphylogenyand throughtimehas revealed inmultiple independent lineages
that WGD events appear to cluster around the K–Pg boundary (Figure 1). This has led to two related hypotheses: that
genome duplication may have conferred an ‘extinction resistance’ to particular lineages of plants, and that polyploid
genomes may have allowed surviving lineages to rise to dominance in the wake of this mass extinction episode.

Polyploid plants are sometimes found towards the edge of species ranges, and polyploid genomes facilitate rapid
radiations and invasiveness. Polyploid genomes also possess a ‘mutational robustness’ relative to diploids, and this
may provide short-term advantages which could have allowed them to survive and then thrive. An alternative hypothesis
suggests that it is not WGD itself that facilitated extinction resistance, but the coincidence that many newly formed
polyploids rely on selfing for reproduction. Selfing is also associated with the extremes of novel habitats, but in the long
term is seen as an evolutionary dead end. A return to outbreeding could allow the continued success of these lineages
and may also explain the apparent lag between WGD and diversification.

These hypotheses are entirely dependent on the precise timing of each duplication event. As shown in Figure 2, current
estimates for the timing ofWGD are likely to change given a careful appraisal of the fossil record. As such, until the timing of
eachWGDeventthat isconsideredto lieclosetotheboundary isre-evaluated, thiscorrelationshouldbetreatedwithcaution.
of land plants, the seedplants (Spermatophyta), are descended froman ancestor that underwent
at least one round of WGD [21,22]. Furthermore, within Spermatophyta, another WGD is shared
by all flowering plants (angiosperms) [21], and a further WGD is shared in turn by several major
clades of flowering plants including the monocots [23], eudicots [24,25], Asteraceae [5,26],
Brassicales [27], legumes [28], and the most economically important plants, the grasses
[29,30] (Figure 2). The paucity of ancient WGD events that was perceived early in the history
of genome sequencing increasingly appears to be an oversight, with denser sampling revealing
multiple WGD events during the evolution of taxonomically large and small lineages [6].

Double Dates – The Absolute Timing of WGD
Hypotheses on the role of WGD in plant macroevolution are contingent on the phylogenetic
(relative) and geological (absolute) timing of each event. Methods to identify WGD events are
Box 2. The Origins of WGD

Traditionally, polyploids are recognized as originating from a single parent species (autopolyploidy, xx to xxxx) or from
two hybridizing species (allopolyploidy, xx + yy to xxyy). Current views maintain that these two outcomes exist along a
spectrum, with segmental allopolyploids containing paralogs that display varying levels of synteny [77]. A segmental
allopolyploid may form via hybridization between two closely related species, or through the process of homoeologous
compensation [77]. Despite potential differences in outcome, both are likely to have had significant effects throughout
plant evolution (both processes and their potential evolutionary outcomes have recently been reviewed [97–99]). Based
on observations from neopolyploids, there is reason to believe that their outcomesmay differ, and it is therefore a priority
to establish whether ancient events were a consequence of autopolyploidy or allopolyploidy. Methods to differentiate
between the two processes are under development, and in some instances ancient events have been successfully
characterized. Genome dominance is a phenomenon observed in allopolyploids, where one subgenome shows lower
expression and retention than the other (biased fractionation). Signal of a bias in gene retention between subgenomes
could provide evidence for allo- rather than autopolyploidy [100]. Gene-tree methods are also capable of resolving
allopolyploid WGDs by considering reticulate patterns of gene-tree evolution [17,101], and in some instances they have
been able to identify the most likely parental lineages involved in the hybridization event [102].

The nature of the WGD affects the approach required for dating because auto- and allopolyploidy present different
issues. The two subgenomes of an allopolyploid would have diverged at the point of speciation between the two parent
lineages, rather than at the hybridization event itself [50,103]. Successful and viable hybrids are more likely to arise
between closely related species, giving rise to ‘segmental allopolyploids’. However, there are examples of hybridization
between distantly related lineages of plants [104], which could lead to a significant overestimation of the age of the
WGD. Similarly, as outlined previously, autopolyploidy can lead to a prolonged period of tetrasomic inheritance between
ohnologs [59]. In this case there is potential to underestimate the age of theWGD because the ohnologs will only start to
diverge once disomic inheritance has occurred, and we date the point at which they diverge rather than the date of
duplication.
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(Figure legend continued on the bottom of the next page.)

The Distribution of KnownWhole-Genome Duplication (WGD) Events within the Plant Kingdom.Most events are shown from Van de Peer et al.
[91] but have been updated. The length of each bar along the branch indicates the current estimate for its age. Duplication events of unknown origin are shown in navy
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many and varied: these include paralog (see Glossary) substitution distributions (plots of the
synonymous substitution rate, Ks) [31,32], phylogenomics [21], genome size, karyotype, gene
copy-number analyses [33,34], and synteny [23,35,36]. Greater sampling of diversity helps
resolve the phylogenetic (relative) timing of each WGD, but to refine these hypotheses it is
important that their absolute ages are known with accuracy and precision. Absolute ages can
be constrained by the age of bracketing speciation events sinceWGDmust have occurred after
the divergence of species that have not undergoneWGD, and before those living species within
the same lineage that have (Figure 2). When taxonomic sampling is dense and the WGD
occurred on a short branch (such as with more recent events) this can yield relatively precise
age estimates [37]. However, with increasing uncertainty in species divergence time estimates,
longer branches, monotypic lineages, or less-dense sampling, it becomes more challenging to
directly estimate the timing of a WGD.

As well as being a means to identify and relatively date WGD events, both Ks analyses and
phylogenomic methods can be used to directly infer the age of WGD events [32,38–40]. Ks
plots represent distributions of rates of synonymous substitutions between paralogs. A peak in
the distribution is interpreted as a WGD event, and distributions compared between species
can reveal shared duplication events. An external calibration can convert Ks rates into geologi-
cal time, although this is often done by comparing the position of the peak in Ks rates to ages
inferred from phylogenomic dating, for example a Ks value between 0.6 and 1.1 synonymous
substitutions per site corresponds to an age of 50–70 Myr. These methods assume a strict rate
of molecular evolution, and diff erent rates produce highly variable age estimates. The signature
of increasingly ancient WGD events is eroded by sequence saturation, and therefore the dating
of more ancient events is prone to error [32]. For example, a WGD event predicted in the early-
diverging gymnospermGinkgo biloba was estimated at between 500 and 700 Ma – pre-dating
most estimates for the origin of land plants [41–43].

Phylogenomic approaches exploit the signal of paralogy present in the history of gene families to
directly estimate the age of theWGD event [21]. This requires the reconstruction of gene families
across multiple species (also termed a phylome [44]) and subjecting them to molecular clock
analysis. Molecular clock methodology has typically been applied to dating species divergences
but can also be used to date both speciation and duplication events within gene trees. Typically,
molecular clock analyses have investigated each gene family in isolation, producing both a
topological and temporal estimate of WGD events. Molecular clock approaches to dating
WGD have either been flawed by the underlying algorithm [45] or, whenmore powerful Bayesian
uncorrelatedmethods have been used, by the limited sampling of taxa and a paucity of appropri-
ate fossil calibrations [40]. Furthermore, dating individual gene families does notmake best use of
information available because individual gene families have low statistical power, yielding impre-
cise, if not inaccurate, estimates of gene and (by inference) genome duplication dates.

Paralog sets derived from aWGD share the same age and can be combined in a concatenated
alignment that is capable of producing far more precise results than any single gene family
[46,47]. Precision is not the sole concern, and improved accuracy is achieved by using
conservative paleontological constraints on speciation events [48] alongside clock methods
that can model both the uncertainty in the fossil evidence and the variation in rates of evolution
between genes [46,49]. Box 3 shows a schematic analysis of the WGD present in the ancestor
blue, triplications in red, known autopolyploidy events in yellow, and allopolyploidy events in green. The white bar associated with Caryophyllales represents 26
independent WGD events, some of which are autopolyploidy and some allopolyploidy. Named duplication events are shown alongside their Greek letter. Abbreviations:
Camb., Cambrian; Carb., Carboniferous; Ord., Ordovician; Neo., Neogene; Pal., Paleozoic; Sil., Silurian.
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Box 3. Dating WGD in Grasses

Syntenic and phylogenomic evidence points towards aWGDevent in the ancestor of all extant grasses (Poaceae) [23,30].
TheRhoevent haspreviously beendated throughphylogenetic bracketing to�70Ma [90] and isoneof the numerousplant
WGDshypothesized to approximate the K–Pgboundary [91].We sampled the gene families thatwere previously shown to
retain the signal of the Rho duplication (Figure 2.1) and concatenated them into an alignment (Figure 2.3; see File S2 in the
supplemental information online). Fossil evidence constrains the minimum age on speciation nodes (see File S1 in the
supplemental information online), and in some cases can be used to apply ‘soft’ maxima [92] (Figure 2.2). The Late
Cretaceous fossil phytolith taxonChangii indicum is assigned to the crowngroup (i.e., the living clade) of theOryzeae tribe,
andprovidesaminimumageof66Mabasedon radiometric dating [93–95]. This fossil placementof this fossil is contentious
and can be instead used to calibrate the BOP (Bambusoideae, Oryzoideae, Pooideae) + PACMAD (Panicoideae, Arundi-
noideae, Chloridoideae, Micrairoideae, Aristidoideae, Danthonioideae) clade of grasses [95]. We applied further fossil
constraints and, combinedwith the concatenated alignment, these calibrations informaBayesianmolecular clock analysis
performedon the fixed topology ofMcKain et al. in the phylogenetic programMCMCTREE [96]. The results predict that the
WGD tookplace in the97–85Maperiod, and in this case isnot compatiblewith the hypothesis that this event coincideswith
the K–Pg boundary (Figure 2.5). Abbreviation: ANA grade.
of all grasses (Rho). This event is evident in the genomes and phylomes of multiple extant grass
species which, owing to their economic value as food crops, have been well-sampled by
sequencing projects [30].

As well as being able to inform on the coincidence of WGD with geological or biogeographic
events, these approaches coestimate the timing of duplication alongside the timing of specia-
tion. This allows us to see how early or late WGD occurred relative to the crown (extant) clade
and to directly estimate lag between the WGD event and any hypothesized macroevolutionary
consequences [46].

Whole Genomes and Diversification
Diversification is one of the most widely proposed consequences of WGD in plants. This
relationship has been explored at multiple levels across angiosperms, but support for a
correlation remains equivocal [2,29,50,51]. There is little evidence supporting a direct shift
in diversification immediately following WGD. Instead, there is some support for the proposed
‘WGD lag-time’model, wherein diversification follows WGD – but only after a protracted period
of geological time [2]. The lag period has been measured either as a period of absolute time or
as an arbitrary measure of time such as the number of nodes separating a WGD event and a
subsequent shift in the rate of diversification. When the age of the duplication event and the
subsequent speciation events are coestimated, the absolute age and duration of the lag can be
estimated directly [46]. Estimates for the timing of the angiosperm-specific genome duplication
event imply that it occurred 65–35 Myr before the divergence of crown angiosperms (the living
clade of flowering plants), closer to 70 Myr before the radiation of the Mesangiospermae and
over 100 Myr before a detectable angiosperm radiation in the fossil record [46,52]. Such an
extensive lag raises two questions: first, is it plausible to associate two events that are
separated by such a long interval of time? Second, why did the early diverging lineages of
angiosperms (the ANA grade: Amborellales, Nymphaeales, and Austrobaileyales) not undergo
a similar radiation?

Schranz et al. [53] proposed amodel in whichWGDprovides latent evolvability that may be later
triggered by a shift in environment and promote diversification. This has been further refined,
and several new models have emerged to explain the lag phase, some of which are readily
testable. Among these is the suggestion that it is not WGD, but the ensuing process of genome
fractionation (or diploidization), that may be responsible for diversification. During this process
the organism undergoes large-scale genome rearrangements and redundant gene copies are
silenced and excised, leading to potentially novel patterns of expression [54]. Most angiosperm
lineages have undergone multiple rounds of WGD and exhibit the fastest rate of genome size
938 Trends in Plant Science, October 2018, Vol. 23, No. 10



evolution among land plants [55], and it has been proposed that their ability to rapidly downsize
their genome in the wake of WGD has led to their global dominance [56]. Ferns show a higher
rate of genome duplication than angiosperms but appear not to undergo such extensive
genome downsizing and are considerably less diverse than angiosperms [33,57]. The observed
lag between WGD and diversification in angiosperms may be explained by the period of
genome fractionation, although the long-term rate of fractionation is uncertain. It seems
appropriate to ask whether the extent or rate of genome reorganization post-WGD correlates
with observed shifts in the rate of diversification. The WGD event associated with one of the
most dramatic shifts in diversification, the gamma event at the base of the eudicots, involved
extensive genome reorganization [25,58]. Speciation post-WGD would lead to fractionation
occurring independently in separate lineages, which could explain the differences between
lineages that emerge from WGD [54].

In the specific case of autopolyploidy (duplication involving a single parental lineage) the newly
duplicated paralogs can pair randomly at meiosis. This pattern of tetrasomic inheritance
facilitates ongoing exchange between paralogous chromosomes and may prevent them from
diverging until a state of disomic inheritance is restored [59,60]. The period required to attain a
state of disomic inheritance could also explain the macroevolutionary lag between WGD and
phenotypic evolution. As with the duplication/fractionation model, speciation occurring before
the restoration of disomic inheritance will result in independent diploidization of lineages.
Robertson et al. [59] demonstrated this ‘lineage-specific ohnolog resolution’ (LORe) model
in the descendants of the salmonid fish-specific WGD event, and showed that independent
diploidization was present in 27% of salmonid paralogs. Although untested in plants, its
predictions of a long lag period and disparate evolutionary trajectories suggest that it may
also fit the patterns observed after the angiosperm-specific WGD.

The case for a general theory of WGD as an intrinsic driver of diversification is undermined by
the multiple cases where WGD does not accompany any shift in diversity. Non-seed-plant
lineages, such as paleopolyploidmosses and horsetails, remain species-poor despite repeated
duplications [7,10]. This can be partly reconciled by the differing rates of genome downsizing
and rearrangement exhibited by these clades relative to angiosperms. However, further
research on the mechanisms for rapidly altering genome structure is required. Beyond plants
and, in particular, among teleost fish, the paleontological record shows no evidence in support
of a role for WGD in directly promoting diversification [61]. There is some evidence supporting a
direct role for WGD in promoting diversity in yeasts where reciprocal gene loss can lead to
reproductive isolation [62], although on a macroevolutionary scale this effect is small [63].

WGD and Morphological Innovation
The link between WGD and morphological evolution in plants has remained both pervasive and
speculative [1,64]. Some have proposed that polyploids may survive and evolve in extreme or
marginal habitats, allowing them a competitive advantage over their parent species at range
margins [65]. However, the range ofmany extant polyploids does not exceed that of their parents
[66], while genes related to stress tolerance appear to have evolved via tandemduplication rather
than by WGD [67,68]. The evolution of morphological diversity, like species diversity, may also
require a lag phase. For selection to act on innovation, developmental robustness is required [69],
and hence it is possible that morphological diversification may occur only after a period of
developmental lability. At the genetic level, WGD may free a lineage from the constraints of
purifying selection and allow genes to take on new functions [1], such as through neofunction-
alization andsubfunctionalization. At the phenotypic level thismay allow the evolutionof novel
forms and body plans. Indeed, formative innovations within the plant kingdom have been
Trends in Plant Science, October 2018, Vol. 23, No. 10 939
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(Figure legend continued on the bottom of the next page.)

Phenotypic Evolution in the Wake of the Gamma Triplication Which Occurred before the Evolution of the Core Eudicots. (A) An empirical
morphospace based on a morphological matrix [85]. Morphological characters form the basis of a distance metric (Gower’s index) which was subjected to non-metric
multidimensional scaling (NMDS) to display variation in two axes. A consensus phylogeny is mapped onto the morphospace (see File S4 in the supplementary
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associated with the expansion of families of regulatory genes [70,71]. Patterns of gene retention
post-WGDarenot random,and in repeatedcasesgenesencodingproteins that functionaspartof
networks and signaling cascades are retained preferentially [72–74]. This has been explained in
terms of dosage balance and the need tomaintain stoichiometric ratios of proteins within the cell
[75,76]. The dosage-balance hypothesis is exemplified during the diploidization process in
allopolyploids, where exchanges can occur between homoeologous chromosomes of subge-
nomes [77]. Theseexchangescan result innovelgeneexpressionandgenecopynumber [78],but
can also result in the deleterious loss of chromosome regions or entire chromosomes. Homoe-
ologous compensation has been proposed as amechanism to prevent dosage imbalances, and
has been demonstrated to lead to increased phenotypic variation in newly synthesized allopo-
lyploids [77]. The dosage-balance hypothesis does not predict the evolution of morphological
diversity until such constraints are relaxed and retained paralogs are selected to evolve new
functions [14,79]. These constraints may relax under different selection pressures, although a
quantitative model of compensatory drift has also been proposed [80]. Compensatory drift is the
process whereby paralogs are initially retained due to dosage sensitivity, but over time the
expression levels of the individual genes drift until one paralog is free of the dosage-dependent
constraint [80]. Thismodel not only provides amechanism for neofunctionalization to arise froma
state of dosagebalancebut also apotential explanation for theemergenceof evolutionary novelty
after prolonged periods of evolutionary time.

It is difficult to ascribe adaptive evolution to WGD, especially with ancient events. The link
between WGD and novelty has been elegantly shown in the glucosinolate pathway in Brassi-
cales [4]. This gene family has expanded over several rounds of WGD and is involved in plant–
herbivore interactions. It has also been proposed that gene families underpinning floral pat-
terning expanded during the angiosperm-specific WGD [71]. These genes are implicated in the
origin and diversification of the flower, a structure that has shaped recent plant and animal
evolution [81]. The evolution of pentamerous flowers in the core eudicots also coincides with a
genome triplication (gamma, Figure 1) [25,82]. The coincidence of the gamma event with this
major synapomorphy, a large increase in the rate of diversification, and extensive genome
reorganization [58] makes it a tantalizing system in which to investigate the link between WGD
and morphological evolution.

Regulatory gene retention and large shifts in their transcription patterns suggest a role forWGD in
the evolution of eudicot floral diversity [82]. To make such a hypothesis testable, the increase in
phenotypic complexity must be quantified for comparative analysis [83]. To achieve this we can
borrow from paleontology, which has a strong tradition in comparative analysis of phenotype
through multivariate statistics –manifest asmorphospace analyses. The hypothesis that WGD
drives innovationwould predict that events coincide either withmovement to a new ‘island’within
phenotype ‘designspace’orwithcontinuedexpansionofanexisting island.Thesepredictionscan
be testedexplicitlywithdatasets that usediscretephenotypic characters todescribe the traits that
unify and distinguish taxa [84]. For example, one can characterize the disparity of extant angio-
sperms to test the hypothesis that the gamma triplication event coincides with an increase in
phenotypic diversity. To do this we used a morphological dataset that captures the disparity of
early angiosperms, basal eudicots, and core eudicots [85] (see File S3 in the supplemental
information online). We used these data to calculate the dissimilarity between each taxa, as
measuredusingGower’sdissimilaritymetric [86]. To visualize this dissimilarityweperformednon-
information online). (B) The contribution to total disparity (partial disparity) of each clade calculated from distance matrix (1000 bootstrap replicates) [105]. (C) A
morphospace constructed from floral characters. Major trends in floral evolution are displayed next to the lineages; spiral phyllotaxis is present in early angiosperms,
dimerous flowers are common among basal eudicots, and the pentamerous flower is associated with the core eudicots. Abbreviation: ANA grade, from Amborellales,
Nymphaeales, and Austrobaileyales.
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Box 4. Duplication and Disparity in the Conifers

Some explosive WGD events, such as that associated with the core eudicots, coincide with rapid diversification and an increase in phenotypic variation. However,
manyWGDevents in species-poor lineages are not closely associated withmacroevolutionary phenomena.Most conifers are thought to have undergone at least two
rounds of WGD during their evolution, one shared with seed plants, and then two lineage-specific events on the branches leading to Pinaceae and Cupressophytes
[22]. Preliminary analyses of diversity and disparity in the pines indicate a rapid increase in phenotypic variance during the Late Jurassic and Early Cretaceous [83],
and the Pinaceae occupy a highly distinct area of morphospace (Figure I). This provides some corroborative support for the hypothesis that WGD resulted in
phenotypic variation among conifers during their early evolution. However, the age of the pine WGD is currently estimated at between 342 and 200 Ma [22] (Figure I);
given such uncertainty it is not presently possible to link WGD to the shift in phenotypic disparity. This example highlights the need to employ methods that can
accurately and precisely estimate the timing of WGD events because a temporal framework is essential for testing macroevolutionary hypotheses [46].
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Figure I. Evolution in Pinaceae. AnempiricalmorphospaceofPinaceaeandrelativesbuiltfromphenotypiccharacters[106](seeFileS5inthesupplemental information
online)which formed thebasisof adistancematrix (Gower’s index) thatwassubjected tonon-metricmultidimensional scaling (NMDS).Aconsensusphylogeny ismapped
onto the morphospace (see File S6 in the supplemental information online). The uncertainty of both the relative (phylogenetic) and absolute timing of the event limits our
understanding of the consequences because the position of the Gnetales remains contentious and the current estimate for the age of the WGD spans over 100 Myr.
metricmultidimensional scaling, a non-metric ordinationmethod that summarizes variationover a
specified number of axes – in this instance, two. The result is presented in Figure 3, which shows
that the core eudicots occupy a far greater area of morphospace than the basal eudicots.
Furthermore, relative to other early diverging lineages of angiosperms, they occupy the largest
proportionofmorphospace (partial disparity,Figure3B). Inaddition,wesubsampledthecharacter
matrix for floral characters only, relating specifically to thegamma-derived hypothesis (Figure 3C).
The resulting morphospace shows less separation between the lineages, but core eudicots still
occupy the largest area and, therefore, exhibit the greatest variation. The construction of a
morphospace can be subjective in that it is dependent on the choice of taxa and characters –

but there is strong evidence to suggest that the gamma triplication coincides with the rapid
evolutionofmorphologicaldisparityamongeudicots.Acomparableanalysisof the impactofWGD
inpines finds support for increasedvariance inmorphospaceoccupation, butgrossuncertainty in
the estimate of the timing of WGD relative to the age of the disparate clade undermines the
hypothesis of a causal link (Box 4).
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Outstanding Questions
Questions remain about the absolute
timing of many of the identified WGD
events among plants � of particular
interest in the clustering of events
around the K–Pg boundary.

The origin of duplication events is
important� it has implications for both
the timing and evolutionary
consequences.

Is morphological evolution accelerated
in the wake of WGD, and what impact
has WGD had on the plant
morphospace?

Disparate outcomes between line-
ages, in terms of morphology and
diversity, still require investigation.
Quantifying phenotypic evolution across multiple lineages will be instrumental in understanding
the role of WGD in the evolution of morphologic complexity. The inclusion of fossil taxa and
recent methods used to estimate disparity through time may allow us to measure the tempo of
phenotypic evolution post-WGD. The impact of key innovations that are attributed to WGD can
be tested by considering their impact on the shape of amorphospace or whether the innovation
has resulted in diversification. A further question arises as to what degree WGD is essential for
the appearance of major innovations. For example, the origin of seed and flowering plants
coincides with a WGD event, but, arguably, a greater number of characters unite the vascular
plants whose origin was independent of any known WGD event [87]. While it is plausible that
saltational evolution has been caused by WGD in the plant kingdom [88], phenotypic com-
plexity may also arise through the evolution more nuanced trans- and cis-acting regulation [89].

Concluding Remarks
WGD is associatedwith amacroevolutionary outcome in somebut not all lineages, and it remains
unclear howandwhy this is thecase.As thenumberof identifiedWGDevents inplant evolutionary
history increases, there is an ever-growing need for a general theory on the role of WGD in
macroevolution. However, to establish whether WGD is a class of event with characteristic and
predictableoutcomes, furtherworkwill benecessary toplace, both relatively andabsolutely, each
event in time. There are many outstanding questions to be answered, but a precise temporal
framework forms the basis for tests that can quantify any macroevolutionary consequences and
inform and refine hypotheses about the relationship betweenWGD, diversification, andmorpho-
logical evolution. Plants are the best system in which to elucidate the effects of WGD because of
the prevalence of these genomic events in plant phylogeny. This will be crucial as we seek to
explain the consequences beyond any single event and, given the role that genome duplication
has had in the evolution of many crop species, being able to make general predictions about the
outcome of WGD is of crucial interest (see Outstanding Questions).
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