REPHRAIN

Protecting citizens online

Timed Secret Sharing

Alireza Kavousi - University College London
Aydin Abadi - University College London

Philipp Jovanovic - University College London

September 2023

(V.74 ukresearcn  EABE University of . THE UNIVERSITY s A
=2 i and Innovation BRISTOL NAY: of EDINBURGH o =


Yvonne Rigby 


Timed Secret Sharing

Alireza Kavousi, Aydin Abadi, and Philipp Jovanovic

University College London

Abstract. Secret sharing has been a promising tool in cryptographic
schemes for decades. It allows a dealer to split a secret into some pieces
of shares that carry no sensitive information on their own when being
treated individually but lead to the original secret when having a suf-
ficient number of them together. Existing schemes lack considering a
guaranteed delay prior to secret reconstruction and implicitly assume
once the dealer shares the secret, a sufficient number of shareholders will
get together and recover the secret at their wish. This, however, may lead
to security breaches when a timely reconstruction of the secret matters
as the early knowledge of a single revealed share is catastrophic assuming
a threshold adversary.

This paper presents the notion of timed secret sharing (TSS), providing
lower and upper time bounds for secret reconstruction with the use of
time-based cryptography. The recent advances in the literature includ-
ing short-lived proofs [Asiacrypt 2022], enable us to realize an upper
time bound shown to be useful in breaking public goods game, an in-
herent issue in secret sharing-based systems. Moreover, we establish an
interesting trade-off between time and fault tolerance in a secret sharing
scheme by having dealer gradually release additional shares over time,
offering another approach with the same goal. We propose several con-
structions that offer a range of security properties while maintaining
practical efficiency. Our constructions leverage a variety of techniques
and state-of-the-art primitives.

1 Introduction

Secret sharing |51] is a vital primitive in cryptography and distributed comput-
ing. A threshold secret sharing scheme, which is the focus of this work, lets a
dealer distribute a secret s, among n parties such that one can recover the secret
given at least a threshold of shares ¢ + 1. With any subset of size t shares, no
information about s is leaked. This design rationale has been proven to be use-
ful in a wide range of applications from secure multi-party computation [57] and
password-protection [6[34], to vertical federated learning [39], and many more.
Traditionally, the threshold secret sharing schemes have been defined with-
out explicit involvement of time bounds for secret reconstruction. That is, once
the dealer shares the secret, they may go offline and it is up to a threshold of
shareholders to get together and recover the secret at any time. However, there
are scenarios where such time bounds are needed. Consider the following exam-
ple with regard to a voting election. Alice decides to cast her vote in an election



2 A. Kavousi et al.

that is due to be held in a decentralized fashion, meaning that there are a set
of collectors independently receiving the voting shares. However, she knows that
she will not be available at the time of the election while does not want to miss
it. It is clear that the shares should be available no sooner than a starting time
(i.e., lower time bound), and should be received no later than an ending time
(i.e., upper time bound).

Moreover, it is possible to have an independent treatment on the time bounds
and argue about their usefulness separately. In some applications like secret
management with decentralized trust [18,25] a determined delay prior to the
reconstruction may be required which is usually addressed by making honest
assumptions on the shareholders to follow a policy. Another example with a
reliance on delayed reconstruction is the commit-reveal mechanism for maxi-
mal extractable value (MEV) prevention in cryptocurrency platforms [32}[42],
preventing validators to benefit from ordering manipulation by learning early
about a transaction before its inclusion on-chain is guaranteed. In particular,
the recent work of |[42] has each user encrypt their transaction using a symmet-
ric key and send the ciphertext to the system. They also secret share the key to
the validators, allowing them to recover the transaction after it gets committed.
We remark that here the event of committing a block is equivalent to a lower
time for reconstruction.

At first glance, the underlying honest majority assumption of the thresh-
old secret sharing schemes seems to be addressing such delayed action if having
a time hardcoded in the system. In what follows, we argue this cannot pro-
vide proper protection when time does matter. First, in critical situations the
dealer may wish to have a guarantee that nobody learns the secret sooner what-
soever without making any honest assumption on the shareholders. Note that
such services are always under threat of being compelled by law enforcement to
provide access. Second, hardcoding time in the system implies making a syn-
chronized global clock assumption for shareholders, which is quite challenging
to realize [5}/9,30]. Any violation in achieving this can lead to a serious secu-
rity violation. Consider a situation where some of the shareholders reveal their
shares sooner than the due time because of a mismatch in synchronization. This
may enable the threshold adversary already controlling a portion of shares to
learn the secret at an earlier time, even before honest parties do. Third, when
there is a huge incentive in the system for shareholders to perform an earlier
reconstruction, like that of MEV for validators, the transition from honest ma-
jority to the dishonest majority is likely in practice. This, in turn, is equivalent
to the system being centralized and can completely negate the usefulness of the
protection mechanism. Observe that here challenging the inherent honest ma-
jority assumption makes sense as the main goal is an early reconstruction and
not avoiding it. In other words, the user (i.e., dealer) is under threat of suffer-
ing from a loss by the set of validators (i.e., shareholders) who may not stick
to the common honest majority assumption. Such dishonest majority does not
violate the possibility of reconstruction as the success of MEV depends on the
completion of reconstruction.



Timed Secret Sharing 3

Although an upper time bound is implicitly assumed in practice for the sake
of termination |36], we explicitly formalize it with the additional aim of breaking
public goods game, an inherent aspect of systems with fault tolerance. In fact,
the underlying fault tolerance of the threshold secret sharing schemes makes
them a public goods game [8], as only a threshold of shareholders is sufficient
for reconstruction. One of the known techniques in the literature to break this is
via harnessing the financial capabilities of the blockchain systems to reward the
participants if they publish their shares sooner [4,37]. In this work we introduce
two other off-chain methods to address this issue.

1.1 Our Approaches

We base our approaches on combining threshold secret sharing schemes and
time-based cryptographic primitives with concretely efficient instantiations, in
particular, time-lock puzzle (TLP) [1,41./48], verifiable timed commitment (VTC)
[54], and verifiable delay function (VDF) [4658|. In the remainder of this section,
we outline how each of our proposed construction works.

Timed Secret Sharing (TSS). This is our basic construction, where the dealer
locks the shares by putting them into TLPs [41},48] to realize the lower time
bound 7. This treatment offers two features. First, no computationally bounded
shareholder can learn its share before T7. So, even if all the shareholders collude,
they cannot recover the secret. Second, working through TLPs that resist parallel
computing provides a consistent relative timing (i.e., computational timing) for
the participating parties, eliminating the reliance on a shared global clock to
preserve security (i.e., no early release of shares). The reconstruction can occur
at any time after 77 by at least a threshold of parties.

Verifiable Timed Secret Sharing (VTSS). To provide security against an
active adversary, we first need to protect against a malicious dealer distributing
malformed puzzles, i.e., puzzles that either are not extractable or contain invalid
shares. Such checks must be performed before shareholders try to retrieve the
shares. Moreover, we need to protect against a malicious shareholder sending
wrong share. To achieve it, we make use of verifiable timed commitment (VTC)
[54] and verifiable secret sharing (VSS) in a novel way to provide verifiability
against the dealer in the distribution phase and against shareholders in the
reconstruction phase.

Publicly Verifiable Timed Secret Sharing (PVTSS). The first step to
make the scheme publicly verifiable is to deploy a publicly verifiable secret shar-
ing (PVSS) scheme [16450]. To simultaneously ensure the validity of embedded
encrypted shares and extractability of puzzles in a public manner, we construct
an efficient non-interactive zero-knowledge (NIZK) protocol and utilize the cut-
and-choose technique [38]. The latter forces the dealer to randomly open a set
of t puzzles to show they are constructed correctly. Moreover, we observe that
public verifiability allows for the use of short-lived proofs (SLPs) [3] to real-
ize /strengthen the notion of upper time bound by binding the correctness of the
protocol to time. More precisely, we utilize SLPs as proofs with time-sensitive



4 A. Kavousi et al.

soundness as part of the reconstruction phase of PVTSS. So, given that the
secret (and therefore each share) is distributed uniformly at random, the asso-
ciated SLP cannot vouch for the validity of a submitted share after some time.
This essentially puts an upper time bound for PVTSS by making the system
usable up to some time Tb, i.e., the correct reconstruction is only guaranteed
before T». We then argue that this can provide an off-chain solution for breaking
public goods game.

Decrementing-threshold Timed Secret Sharing (DTSS). We observe that
having the dealer publish additional time-locked shares gradually over time is
another technique to realize an upper time bound 75 and of course breaking pub-
lic goods game. In fact, the consequence of this gradual release of shares is the
gradual reduction of the fault tolerance, forcing the shareholders to perform the
reconstruction before the resilience of the system against a threshold adversary
decays. We design a protocol which lets the dealer release additional time-locked
shares recovered gradually at different points in time. The dealer can go offline
right after distributing the locked shares. On the other hand, this idea is use-
ful in scenarios where there is not a sufficient number of (honest) shareholders
availableﬂ for reconstruction in the period between T} and 75. This way, the re-
maining parties can use the additional shares to reconstruct the secret, offering
robustness to the system. To construct an efficient protocol for this purpose, we
use multi-instance TLP [1].

Our contributions. In this paper, we make the following contributions:

— We present and formally define timed secret sharing (TSS) scheme, allowing a
dealer to share a secret to a set of n shareholders with a timely reconstruction
by a threshold of them in [T7, T3]

— To provide verifiability, we present and formally define verifiable timed secret
sharing (VTSS) scheme, protecting against a malicious dealer in distribution
and malicious shareholders in reconstruction.

— To provide public verifiability, we present and formally define publicly verifi-
able timed secret sharing (PVTSS) scheme.

— We present and formally define decrementing-threshold timed secret sharing
(DTSS) scheme, establishing a trade-off between time and fault tolerance in
a threshold secret sharing scheme.

— Following the above, we introduce two ideas regarding breaking public goods
game in threshold secret sharing-based systems. One leverages the recently
introduced notion of short-lived proofs |3, and the other is based on the novel
technique of gradual release of additional shares.

— We propose efficient constructions for all the aforementioned schemes.

2 Related Work

There is a large body of works on the combination of computational timing
and cryptographic primitives such as commitment [2}12,24,|43}|55], encryp-

1 A large number of the (honest) shareholders may go offline in a burglary, fire, etc.



Timed Secret Sharing 5

tion [15}[21}|40], signature [7,/23,128,54], and more. The essence of almost all
of these works is to enable the receiver(s) to forcefully open the locked object
after a predefined period by working through some computational operation.
Boneh and Naor [12] put forth the notion of timed commitment where, before
solving the puzzle, the receiver gets convinced that it is well-formed by running
an interactive protocol with the prover. Recently, Manevich and Akavia [43] pre-
sented a primitive called attribute verifiable timed commitments (AVTC) as an
enhancement on [12], enabling the sender to convince the receiver that the com-
mitted secret possesses some arbitrary attribute. They do so by augmenting the
original timed commitment with generic zero-knowledge proofs.

The work of [54] proposed efficient constructions for encapsulating a sig-
nature into a TLP, ensuring the receiver can extract the valid signature after
carrying out sequential computation. Roughly speaking, the sender secret shares
the signature and embeds each share in a linearly homomorphic TLP [41]. Then,
the sender and receiver run a cut-and-choose protocol for verifying the correct-
ness of the puzzles. Moreover, to enable the receiver to compact all the pieces of
time-locked signatures and solve one single puzzle, a range proof is used to guar-
antee that no overflow occurs. With a focus on reducing the interaction in MPC
protocols with limited-time secrecy, the authors in [2] developed a gage time
capsule (GaTC), allowing a sender to commit to a value that others can obtain
it after putting a total computational cost which is parallelizable to let solvers
claim a monetary reward in exchange for their work. The security guarantee of
GaTC is similar to DTSS in the sense that over time it gradually decays, as
the adversary can invest more and more computational resources. Doweck and
Eyal [24] constructed a multi-party timed commitment (MPTC) that enables a
group of parties to jointly commit to a secret to be opened by an aggregator
later on via brute-force computation. As performing sequential computations
might be beyond the capacity of some users, [56] developed a system to allow
users to outsource their tasks to some servers in a privacy-preserving manner.
Recently, the work of [53] constructed a TLP that supports unbounded batch-
solving while enjoying a transparent setup and a puzzle size independent of the
batch size. Although their construction is only of theoretical interest and does
not have practical efficiency, it enables a party to solve many puzzle instances
simultaneously at the cost of solving one puzzle (i.e., batch solving). One of the
motivating reasons for TLP of [53] is to enable a party solves the puzzles of
others (via batch solving) in case a large number of parties abort. We refer the
reader to [45] for a more detailed overview of relevant works.

3 Preliminaries

3.1 Threat Model

We consider a standard synchronous network where each pair of parties in a
set P ={Py,..., P,} is connected via an authenticated communication channel,
and each message is delivered at most by a known delay. There is also a dealer
D that takes the role of distributing the secret among participating parties. As



6 A. Kavousi et al.

common in the literature for verifiable secret sharing schemes, we assume the
existence of broadcast channels. For a publicly verifiable scheme, we assume the
existence of an authenticated bulletin board which once a message is posted, it
becomes available to everyone. We assume a static adversary that may corrupt
up to t out of n parties before the start of protocol execution. The dealer D may
also be corrupted. Corruption occurs in two forms of semi-honest or malicious.
In the former, the corrupted parties are assumed to follow the protocol but may
try to learn some information by observing the protocol execution. In the latter,
however, the corrupted parties are allowed to do any adversarial behavior of
their choice. The adversary’s computational power is bounded with respect to a
security parameter \ that gives it a negligible advantage in breaking the secu-
rity of underlying primitives. Such algorithms are often known as probabilistic
polynomial time (PPT). Finally, we denote by [n] the set {1,...,n} an by v a
vector of elements {v; }ic[n]-

3.2 Secret Sharing

The core building block of our constructions is a secret sharing scheme that al-
lows D to distribute a secret s among a set of n parties P. The scheme typically
consists of two main phases; namely, distribution and reconstruction. In the for-
mer, the dealer sends each party its corresponding share, and in the latter, any
proper set of parties can uniquely reconstruct the secret by pooling their shares.
A (t,n) threshold secret sharing guarantees that the secret is reconstructed by
any subset of at least t + 1 shares (i.e., correctness) while no information is
revealed about the secret by gathering any fewer shares (i.e., t-security). In this
work, we focus on Shamir secret sharing [51] for proposing concrete construc-
tions. However, our proposed definitions are generic and capture any (linear)
secret sharing.

Verifiable Secret Sharing (VSS). The basic (¢,n) threshold secret sharing
scheme of [51] only provides security against passive adversary, meaning that its
security is guaranteed as long as the participating parties run the protocol as
specified by the scheme. When considering malicious adversary, it is required to
have the dealer ensure parties about the validity of sharing and parties ensure
the reconstructor about the validity of their submitted shares. This is the moti-
vation behind developing VSS schemes [26L|35]. Moreover, apart from satisfying
the t-security condition likewise the basic setting, here the scheme requires an
additional assumption of ¢ + 1-robustness that guarantees there is enough num-
ber of shares to reconstruct the secret in the case some parties refuse to take
part and give back their shares.

Publicly Verifiable Secret Sharing (PVSS). To extend the scope of verifia-
bility to the public and not only participating parties, PVSS schemes [164({17,50]
deploy cryptographic primitives such as encryption and NIZK proofs. PVSS en-
ables anyone to verify the distribution phase (by the dealer) and reconstruction
phase (by the shareholders). The public verifiability feature is important in var-
ious applications, such as generating public randomness [16].



Timed Secret Sharing 7

SCRAPE PVSS. The work of |16] introduced a PVSS scheme that is an im-
provement over [50] enjoying the luxury of a new method for doing the veri-
fication regarding the equivalence of Shamir secret sharing and Reed Solomon
error-correcting code [44]. In a nutshell, the SCRAPE protocol works as fol-

lows. The dealer D chooses a random value s < Z4, sets the secret as a group
element of form S = h®, splits s into shares {s;};c[,), and computes the en-
crypted shares {8;};e[,,) using corresponding parties’ public keys {pk;};c[n). The
dealer also publishes a set of commitments to shares {v;}ic[n) together with a
proof mp, enabling anyone to check the consistency of the shares (i.e., shares
are evaluations of the same polynomial of proper degree) and validity of the
ciphertexts (i.e., encrypted shares correspond to the committed shares). Upon
receiving a threshold number of valid shares (i.e., shares with correct decryp-
tions), anyone can use Lagrange interpolation in the exponent to reconstruct the
secret S. SCRAPE PVSS is proposed in two versions, one in the random oracle
model under Decisional Diffie-Hellman (DDH) assumption and the other one in
the plain model under Decisional Bilinear Squaring (DBS) assumption [31]. We
use the non-pairing variant of the protocol which offers knowledge soundness.
This is vital for security reasons, ensuring the secret chosen by the adversary
is independent of those of honest parties. Moreover, we require the knowledge
soundness property for deploying short-live proofs [3].

3.3 Time-lock Puzzles

The idea of TLPs was initially introduced in [48]. TLP locks a secret such that
it can only be retrieved after a predefined amount of sequential computation. It
consists of two algorithms: TLP.Gen, taking a time parameter 7" and a secret s
to generate a puzzle Z, and TLP.Solve, taking the puzzle Z to retrieve the secret
s. A TLP must satisfy correctness and security. The correctness ensures that
the solution is indeed obtained if the protocol gets executed as specified. The
security ensures that no PPT adversary running in parallel obtains the solution
within the time bound 7', except with negligible probability.

Homomorphic Time-lock Puzzles (HTLP). Malavolta and Thyagarajan
[41] proposed homomorphic TLP, enabling one to homomorphically combine
many instances of TLPs into one compact TLP. An HTLP consists of a tuple
of algorithms (HTLP.Setup, HTLP.Gen, HTLP.Solve, HTLP.Eval). In particular,
HTLP.Setup generates public parameters pp on input a security parameter, and
HTLP.Eval performs a homomorphic operation on a set of puzzles to output in
a single puzzle.

Multi-instance Time-lock Puzzle (MTLP). Abadi and Kiayias [1] proposed
a primitive called multi-instance TLP. This variant of TLP is suitable for the case
where the solver is given multiple puzzles at the same time but must discover each
solution at different points in time. It allows solving the instances sequentially

one after the other without needing to run parallel computations on them. An
MTLP consists of a tuple of algorithms (MTLP.Setup, MTLP.Gen, MTLP.Solve,



8 A. Kavousi et al.

Prove, Verify), where the last two algorithms are used to check the correctness
of a solver’s claimed solution.

3.4 Timed Commitment

An inherent limitation of the well-known time-lock puzzles such as [41,48] is the
lack of verifiability, meaning that the receiver cannot check the validity of the
received puzzle unless after putting time and effort into solving it. To fill this gap,
a timed commitment scheme [12] enables the receiver to make sure about the
well-formedness (i.e., extractability) of the puzzle before performing a sequential
computation. In an attempt to make the timed commitment of [12] efficiently
verifiable, the recent work of [54] proposed verifiable timed commitment (VTC),
enabling the sender to Veriﬁablyﬂ commit to signing keys of form pk = ¢°*,
sk € {0,1}*. The VTC primitive consists of a tuple of algorithms (VTC.Setup,
VTC.Commit, VTC.Verify, VTC.Solve). Manevich and Akavia in [43] augment
the timed commitment of Boneh and Naor [12] with zero-knowledge proofs,
enabling the sender to prove any arbitrary attribute regarding the committed
value. Intuitively, given a statement and the corresponding witness (v;w) €
R, they follow the MPC in the head framework [33] to construct a predicate
F : {0,1}* — {0,1} that verifies the committed value (i.e., witness) indeed
satisfies the relation R with respect to the public statement v. To do so, they
introduce attribute verifiable timed commitment (AVTC) primitive with the
tuple of algorithms (AVTC.Setup, AVTC.Commit, AVTC.Solve). This primitive
allows a sender to commit to a witness w while guaranteeing that (v;w) € R.
Note that we deploy (A)VTC in a black box manner to design construction for
our verifiable time secret sharing (VTSS) scheme.

3.5 Sigma Protocols

A zero-knowledge protocol enables proving the validity of a claimed statement
by the prover P to the verifier V without revealing any information further.
While zero-knowledge protocols involve a rich body of settings and notions, we
particularly consider the well-known Sigma protocols which are useful building
blocks in many cryptographic constructions. Let v denote an instance that is
known to both parties and w denote a witness that is only known to the P. Let
R = {(v;w)} € V x W denote a relation containing the pairs of instances and
corresponding witnesses. A Sigma protocol X on (v;w) € R is an interactive
protocol with three movements between P and V. Using Fiat-Shamir heuristic
[27] in the random oracle model, one can make the protocol non-interactive
with public verifiability. A Sigma protocol should satisfy two security properties
including soundness, ensuring the verifier about the validity of the statement v,
and zero-knowledge, ensuring the prover about the secrecy of the witness w.

2 Ensuring the extractability together with validity of the committed message that is
the discrete logarithm of a public key.



Timed Secret Sharing 9

Zero Knowledge proof of equality of discrete logarithm. One of the common
Sigma protocols is discrete logarithm equality (DLEQ) proof. That is, for a tuple
of publicly known values (g1,x, g2,y), where g1, go are random generators and
x,y are two elements of the cyclic group G of order ¢, respectively, the DLEQ
proof enables a prover P to prove to the verifier V' that it knows a witness «
such that = ¢g¢ and y = ¢§'. A DLEQ proof is actually an AND-composition of
two Sigma protocols for relation R = {(v;;w) : v; = g’} with the same witness
and challenge. The following protocol is a Sigma protocol for generating a DLEQ
proof due to Chaum-Pedersen [19].

1. P chooses a random element u < Z4, computes a; = g and az = g3, and

sends them to the V.

. 'V sends back a randomly chosen challenge c & ZLq.
. P computes r = u + ca. and sends it to V.
.V checks if both g7 = a12¢ and g5 = a2y hold.

Throughout the paper we use the non-interactive version of this protocol
which produces a single message DLEQ.P(«, g1, , g2,y) as proof 7 verified via
DLEQ.V(7, g1, x, g2,y). The challenge is computed by the prover as ¢ = H(z,y, a1, as),
where H is a cryptographic hash function modeled as a random oracle.

=N

3.6 Short-lived Proofs

In Asiacrypt 2022, Arun et al. [3] put forth the notion of short-lived proofs
(SLPs) which can be roughly defined as types of proofs with expiration such
that their soundness will disappear after some time. In fact, they are only sound
if being observed before a determined time, afterwards, they may be forgery
indistinguishable from valid proofs. At a high level, an SLP is proof of an OR-
composition RV Rypp, where R is an arbitrary relation and Ry pp is a VDF
evaluation relation. Interestingly, this proof is only convincing to the verifier
for a determined time 7' as forging the proof is possible after performing some
sequential computation for evaluating the VDF. Due to the nature of VDF,
short-lived proofs offer efficient public variability. One notable point is that the
primitive makes use of a randomness beacon (22| which outputs unpredictable
values b periodically.

An SLP scheme consists of a tuple of four algorithms (SLP.Setup, SLP.Gen,
SLP.Forge, SLP.Verify) with the following behaviour. SLP.Setup generates public
parameters pp on input the security parameter and time parameter 7'. SLP.Eval
takes pp, an input z, a random beacon value b, and generates a proof 7. SLP.Forge
takes pp, =, b, and produces a proof . Lastly, SLP.Verify validates the proof 7
on input pp, z, 7, and b. A short-lived proof must satisfy four security properties
including forgeability, enabling anyone running in time (1 + €)T" to generate a
valid proof, soundness, preventing a malicious prover P* running with parallel
processors to generate a convincing proof in time less than T, zero knowledge,
preserving the privacy of the witness w, indistinguishability, making the real and
forge proofs indistinguishable.



10 A. Kavousi et al.
4 Timed Secret Sharing (TSS)

With timed secret sharing (TSS), we make a secret sharing scheme dependent
on time, having the reconstruction phase occur within a determined time inter-
val, [Ty, T3], where T; is the lower time bound and T is the upper time bound.
These time bounds might be required by the dealer or as part of the system
requirements, or even a combination of these two. An important consideration,
however, is that the dealer’s availability should not be affected by making the
scheme time-based, meaning that the dealer’s role should finish after the distri-
bution phase similar to the original setting.

4.1 TSS Definition

In this section, we present a formal definition of T'SS. Our definition follows the
original definition of a threshold secret sharing scheme.

Definition 1 (Timed Secret Sharing). A timed secret sharing (TSS) scheme
involves the following algorithms.

1. Initialization:
— Setup: TSS.Setup(1*,T1,T2) — pp, on input security parameter X, lower
time bound Ty and upper time bound Ty, publishes public parameters pp.
The algorithm is run by the dealer D.
2. Distribution:

— Sharing: TSS.Sharing(pp, s) — {Ci}icjn), on input pp and secret s € Sy,
generates a locked share C; with time parameter T for each party P; in the
set P. The algorithm is run by the dealer D.

3. Reconstruction:
— Recovering: TSS.Recover(pp, C;) — s;, on input pp and C;, recovers s;. The
algorithm is run by each party P; in P.
— Pooling: TSS.Pool(pp, S,Ts) — s, on input pp and a set S of shares (where
|S| >t and t € pp), outputs the secret s if To has not elapsed. Otherwise,
it outputs 1.

A correct TSS scheme must satisfy privacy, ensuring no share is obtained
prior to 77 and security, ensuring any set of shares less than a threshold re-
veals no information about the secret prior to T5. Note that we care about T
security-wise due to our main motivation of guaranteeing a lower time bound
for reconstruction. We treat 7o mostly as a matter of formalization and rely
on the underlying assumption of having common knowledge of time for par-
ticipating parties to realize. We later show how to relax this assumption using
computational timing.

Definition 1.1 (Correctness). A TSS satisfies correctness if for all secret s € S
it holds



Timed Secret Sharing 11

TSS.Setup(1*, Ty, T2) — pp,
Pr |TSS.Pool(pp, S, T2) — s : TSS.Sharing(pp, s) = {Ci}icin)s| =1
TSS.Recover(pp, Z;) — s;

Definition 1.2 (Privacy). TSS satisfies privacy if for all parallel algorithms A
whose running time is at most less than 7; there exists a simulator Sim and a
negligible function p such that for all secret s € Sy, all A € N, and all 7 € [n] it
holds

TSS.Setup(1*, T1, T») — pp,
Pr | A(pp, s, {Citic) =1 : A(pp,1*) — s, -
TSS.Sharing(pp, s) = {Ci}icn)
TSS.Setup(1*, T4, Tz) — pp,
Pr | A(pp, ', {Ci}jer) =1+ A(pp,1*) — &/,
Sim(pp) = {Ci}jem

Definition 1.3 (Security). TSS satisfies security if an adversary A controlling a
set &’ of parties/shares, where |S’| <t and s € Sy, learns no information about
s. Thus, it must hold

< u(N)

TSS.Setup(1*, T1, T2) — pp,
Pr |A(pp, S', T2) — s : TSS.Sharing(pp, s) = {Ci}icn)s| < p(A)
TSS.Recover(pp, C;) — s;

4.2 TSS Construction

We present an instantiation of TSS in Figure[I] To enforce a lower time bound
T, the dealer uses TLPs [41,/48] as they allow the dealer to lock the shares
into puzzles and enforce a computational delay for each party to recover its
corresponding share. TLP guarantees that no party P; can obtain its share s;
sooner than T7.

Theorem 1. If the time-lock puzzle TLP and Shamir secret sharing are secure,
then timed secret sharing protocol Iltss presented in Figure [1] satisfies privacy
and security, w.r.t. definitions and [1.3 respectively.

The proof of the theorem can be found in Appendix

5 Verifiable Timed Secret Sharing (VTSS)

So far we assumed all participating parties, including the dealer, follow the pro-
tocol faithfully, providing passive security. In this section, we present verifiable
timed secret sharing (VTSS), an enhanced TSS which considers active adver-
saries who may arbitrarily deviate from the protocol’s description. It protects
against a malicious dealer who may send incorrect or even no shares during the
distribution phase. It also protects against a malicious shareholder who may
send an incorrect share during the reconstruction phase.



12 A. Kavousi et al.

1. Initialization:

— Setup: TSS.Setup(1*,T1,72) — pp, the protocol works over Z,, where ¢ > n. The

dealer D runs TLP.Setup(1*,71) and publishes public parameters pp.
2. Distribution:

— Sharing: TSS.Sharing(pp, s) — {Zi}ic[n), the dealer D picks a secret s € Z, to be
shared among n parties. It samples a degree-t Shamir polynomial f(-) such that
f(0) = s and f(i) = s; for i € [n]. It runs TLP.Gen(1*, 71, s;) to create puzzle Z;
with time parameter 71, locking the share s; for all ¢ € [n]. Finally, D privately
sends each party P; its corresponding puzzle Z;.

3. Reconstruction:

— Recovering: TSS.Recover(pp, Z;) — s;, upon receiving the puzzle Z;, party P; starts
solving it by running TLP.Solve(T1, Z;) to recover the share s;.

— Pooling: TSS.Pool(pp, S,T2) — s, upon having sufficient number of shares (> ¢+ 1)
received before time 75, the reconstructor (a party in P) reconstructs the secret s
using Lagrange interpolation at f(0); otherwise, it returns L.

Fig. 1. TSS protocol IItss

5.1 VTSS Definition

In this section, we present a formal definition of VT'SS. Our definition builds
upon the verifiable secret sharing (VSS) of Feldman [26] which is the basis for
all the existing VSS schemes.

Definition 2 (Verifiable Timed Secret Sharing). A verifiable timed secret
sharing (VTSS) scheme includes the following algorithms.

1. Initialization:

— Setup: VTSS.Setup(1*, T, To) — pp, on input security parameter \, lower

time bound T1 and upper time bound Ts, generates public parameters pp.
2. Distribution:

— Sharing: VTSS.Sharing(pp, s) — {Ci, T }ie[n], on input pp and a secret s,
generates locked share C; with time parameter Ty for each party P; for
i € [n]. It also generates a proof of validity m; for each party’s locked share
C;.

— Share verification: VTSS.Verify, (pp, C;, m;) — {0,1}, on input pp, C;, and
m;, checks the validity of shares to ensure the published locked share C; is
well-formed and contains a valid share of secret s. The algorithm is run by
each party P; and returns 1 if both checks pass. Otherwise, it returns 0.

3. Reconstruction:

— Recovering: VTSS.Recover(pp, C;) — s;, on input pp and C;, forcibly out-
puts a share s;. The algorithm is run by each party P;.

— Recovery verification: VTSS.Verify,(pp, s;,m;) — {0,1}, on input pp, s;,
and 7;, checks the validity of submitted share. The algorithm is run by a
verifier V € P.




Timed Secret Sharing 13

— Pooling: VTSS.Pool(pp,S,T>) — s, on input pp and a set S of shares
(where |S| > t and t € pp) outputs the secret s if To has not elapsed.
Otherwise, it returns 1. The algorithm is run by the verifier V.

A correct VTSS scheme must satisfy soundness, ensuring extractability and
verifiability of the shares, privacy, and security.

Definition 2.1 (Correctness). A VTSS satisfies correctness if for all secret s €
Sy, all A € N, and all ¢ € [n] it holds

VTSS Verify, (pp, Ci, m;) = 1 VTSS.Setup(1*, Ty, T2) — pp,
Pr |VTSS.Verify, (pp, si, m) = 1 : VTSS.Sharing(pp, s) — {Ci, mi},| =1
VTSS.Pool(pp,S,T2) =+ s VTSS.Recover(pp, C;) — s;

Definition 2.2 (Soundness). A VTSS scheme is sound if there exists a negligible
function p such that for all PPT adversaries A and all A € N, it holds

VTSS.Setup(1*, 11, Tz) — pp,

A(pp) — ({C’H 7Ti}ie['n]y Si)v

by := VTSS Verify, (pp, C;, 7;) A Ps s.t.
VTSS.Sharing(pp, s) = {{Ci}icin)» -}
by := VTSS.Verify, (pp, si, m:) A 3C; s.t.
VTSS.Recover(pp, C;) — s;

Pr|bi=1Vby=1: S/L()\)

Definition 2.3 (Privacy). A VTSS satisfies privacy if for all parallel algorithms
A whose running time is at most T3 there exists a simulator Sim and a negligible
function p such that for all secret s € Sy and all A € N, it holds

VTSS . Setup(1*, T3, 1) — pp,
Pr | A(pp, s, {Ci, mi}iem) =1 + A(1%,pp) — s -
VTSS.Sharing(pp, s) — {Ci, mi}icn

VTSS.Setup(l)‘,ThTz) — pp,
Pr | A(pp, s, {Cj, T} jem)) = 1 = A1, pp) — &
Sim(pp) = {Cy, 7 }ien

< u(N)

Definition 2.4 (Security). A VTSS satisfies security if there exists a negligible
function p such that for an adversary controlling a subset S’ of parties/shares,
where |S§'| <t and s € Sy, it holds

VTSS.Setup(1*, T, T) — pp,
Pr | A(pp,S’,T>) — s : VTSS.Sharing(pp, s) — {Cs, i} < u(N)
VTSS.Recover(pp, C;) — s;



14 A. Kavousi et al.

1. Initialization:
— Setup: VTSS.Setup(1*,T1,T2) — pp, let g be a generator of a group G of order ¢.
The dealer D runs VTC.Setup(1*,71) and publishes a set of public parameters pp.
2. Distribution:
— Sharing: VTSS.Sharing(pp, s) — {Ci, i }icn], D picks a secret s & Zq to be shared
among n parties. It samples a degree-t random polynomial f(-) such that f(0) =
s and f(i) = s; for i € [n]. It then commits to f by computing v; = ¢g° and
broadcasting v = {vi}ic[n). Then, D runs VTC.Commit(pp, s;) to create a locked
share C; and a corresponding proof of validity 7, with respect to v;, locking the
share s; to be opened forcibly at T1, Vi € [n]. Let m; = {n},v}. D privately sends
each party P; its sharing {C;, 7} }.
— Share verification: VTSS.Verify, (pp, Ci,m) — {0,1}, party P; runs VTC.Verify
(pp, vi, Cs, ;) to check the locked share C; is well-formed and embeds the share
s; corresponding to v;. It then validates the consistency of the shares by sampling

a code word y* € C*, where y* = {yi",...,yr+}, and checking if H?:l v]_y].i =1.

— Complaint round: If a set of parties of size > ¢t + 1 complain about sharing, then
D is disqualified. Otherwise, D reveals the corresponding locked shares with proofs
by broadcasting {C;, 7 }. If a proof does not verify (or D does not broadcast), the
dealer is disqualified.

3. Reconstruction:

— Recovering: VTSS.Recover(pp, C;) — s;, each P; wishing to participate in recon-
struction runs VTC.Solve(pp, C;) to obtain a share s;.

— Recovery verification: VTSS.Verify,(pp, si,m:) — {0,1}, for each received share s;
from P;, the reconstructor checks its validity by computing ¢°* and comparing it
with v;.

— Pooling: VTSS.Pool(pp, S,T2) — s, upon having sufficient number of valid shares
(i.e.,> t + 1) received before time T%, the reconstrctor (a party in P) reconstructs
the secret s using Lagrange interpolation at f(0) or aborts otherwise.

Fig. 2. VTSS protocol Ilytss

5.2 VTSS Construction

We present a protocol for VTSS in Figure [2| Following Feldman VSS [26], we
make a crucial change in the protocol to adapt it for VT'SS. Notably, in VTSS we
have the dealer commit to the shares rather than the coefficients of the Shamir
polynomial. This modification has two consequences.

First, it allows shareholders to check the consistency of the shares (i.e., all
lie on a polynomial of degree t) using properties of error-correcting code, partic-
ularly the Reed-Solomon code [47]. This is due to the equivalency of the Shamir
secret sharing with Reed-Solomon encoding observed by [44]. We restate the ba-
sic fact of linear error correcting code in Lemmal[l] We refer the reader to [16] for
a detailed description of the verification procedure. We remark that in Feldman
VSS the checking of each share is done against the commitment to the whole
polynomial, but here it is done with respect to an individual commitment to



Timed Secret Sharing 15

each share. So, it is needed to use the following fact of linear error correcting
code to ensure sharing has been done correctly.

Lemma 1. Let C*+ be the dual code of C that is a linear error correcting code
over Zg of length n. If = € Zy\C, and y* is chosen uniformly at random from
Ct, then the probability that (x, y-) = 0 is exactly 1/q.

Second, it enables us to make a black box use of VIC primitive [54] to
non-interactively ensure each party P; that it indeed obtains its correct share
s; at Ty. More precisely, VT'C allows committing to a signing key sk where its
corresponding public key pk = ¢°* is publicly known. Our main insight is that
we can think of v; = ¢g® published by the dealer as a public key for each share
s; committed by VTC. So, each party P; can check the verifiability of its locked
share C; while ensuring the consistency of the shares {s;};cy,. Below, we present
the VTSS protocol’s security theorem.

Theorem 2. If the verifiable timed commitments VTC and Feldman verifiable
secret sharing are secure, then verifiable timed secret sharing protocol IlyTss
presented in Figure[d satisfies soundness, privacy, and security, w.r.t. definitions

and [27] respectively.
The proof of the theorem can be found in Appendix [B.2]

6 Publicly Verifiable Timed Secret Sharing (PVTSS)

In this section, we make our timed secret sharing scheme publicly verifiable,
meaning that anyone, not only a participating party, is able to verify different
phases of the scheme. Such a feature in verification enables removing a possi-
ble complaint round as everyone can validate the correctness of sharing by the
dealer in the distribution phase. To this end, the main building block to deploy
is a publicly verifiable secret sharing (PVSS) scheme that enforces parties to
behave correctly by non-interactively proving the validity of the messages sent
at distribution and reconstruction phases.

6.1 PVTSS Definition

We now present a formal definition of PVTSS. It is based on the models already
provided in the literature for PVSS like [16L|17}50].

Definition 3 (Publicly Verifiable Timed Secret Sharing). A PVTSS scheme
inwvolves the following algorithms.

1. Initialization:

— Setup: PVTSS.Setup(1*, Ty, T5) — pp, on input security parameter \, lower
time bound Ty and upper time bound Ts, generates public parameters pp.
FEach party P; announces a registered public key pk; which its secret key sk;
s only known to them.




16 A. Kavousi et al.

2. Distribution:

— Sharing: PVTSS.Sharing(pp, s, {pki}icin)) — {{Citieln), ™}, on input pp,
{Pki}icin), and a secret s, generates locked encrypted share C; with time
parameter Ty for each party P; for i € [n]. It also generates a proof wp for
the correctness of shares. The algorithm is run by the dealer D.

— Share verification: PVTSS . Verify, (pp, {pki, Ci}icn), 7p) — {0, 1}, on input
pp, {pki, Ci}tieln), and mp, checks the validity of the shares. This includes
verifying the published locked encrypted shares are well-formed and contain
correct shares of secret s. The algorithm is run by any verifier V.

3. Reconstruction:

— Recovering: PVTSS.Recover(pp, C;, pk;, sk;) — {8;,m:}, on input pp, C;
pk;i, and sk;, forcibly outputs a decrypted share §; together with proof m; of
valid decryption. The algorithm is run by each party P;.

— Recovery verification: PVTSS.Verify,(pp, C;, $;,m;) — {0,1}, on input pp,
C;, 8;, and m;, checks the validity of the decryption. The algorithm is run
by any verifier V.

— Pooling: PVTSS.Pool(pp, S,T>2) — S, on input pp and a set S of decrypted
shares §; (where |S| > t and t € pp), outputs the secret s if To has not
elapsed. The algorithm is run by V.

Formally, A PVTSS scheme must satisfy the following properties.

Definition 3.1 (Correctness). PVTSS satisfies correctness if for all secret s € S
and all ¢ € [n] it holds that

PVTSS.Verify, (pp, {Ci }ic[n), PVTSS.Setup(1*, 11, 12) — pp,

Pr D, {pkl}le[n]) =1 . PVTSSSha”ng(pp7 S, {pkl}ze[n]) =1
PVTSS Verify, (pp, Ci, 8i, 1) = 1" — {{Ci}icin), ™n},
PVTSS.Pool(pp, S,T2) — S PVTSS.Recover(pp, C;, pki, ski) — {8i, ™}

Definition 3.2 (Soundness). PVTSS scheme is sound if there exists a negligible
function p such that for all PPT adversaries A and all A € N, it holds that

PVTSS.Setup(1*, T3, T2) — pp,

A(pp) - ({pklz Ci}ie[n]77rD7 57 71-),

b1 := PVTSS Verify, (pp, {pki, Ci}icin), ™) A As s.t.
PVTSSSha”ng(pp7 S, {pkl}le[n]) — {{CZ}ZE[TL]7 '}7
be := PVTSS Verify,(pp, C, §,7), A Bsk s.t.
PVTSS.Recover(pp, C, pk, sk) — {8, -},

Pr b1:1Vb2:12 SM()\)

Definition 3.3 (t-Privacy). PVTSS satisfies t-privacy if for all parallel algo-
rithms A whose running time is at most 77, and a set I C [n] with |I| = ¢ + 1,
there exists a simulator Sim and a negligible function g such that for all secret
s € Sy and VA € N it holds that



Timed Secret Sharing 17

PVTSS.Setup(1*, T3, 1) — pp,
Pr [ A(pp.5, (Cihenmo) =1 5 A 20) 5 -
PVTSS . Sharing(pp, s, {pki}icin)
— {{Citiem, ™o}
PVTSS.Setup(1*, T4, Tb) — pp,
Pr | A(pp, s, {Ci}jein, ) =1 + A1, pp) — &'
Sim(pp) = ({Cj}jem: mp)

Definition 3.4 (Security). A PVTSS satisfies security if there exists a negligible
function u such that for an adversary controlling a set S” of parties/shares, where
|S’] < tand s € Sy, together with the public information, denoted by Pl, it holds
that Bl

< u(N)

PVTSS.Setup(1*, 11, T2) — pp,
Pr |A(pp,S’, Pl,Ty) — s: PVTSS.Sharing(pp, s, {pki}icin)) = {{Ci}icm), 7n},| < p(X)
PVTSS.Recover(pp, C;, pki, ski) — {8i, mi}

An indistinguishability definition given in [31,j49] and adopted by [16] formalizes
this. We refer to Appendix [B-4] for more details.

It is worth mentioning that similar to [16], the security requirement here does
not capture any privacy for the secret after the reconstruction phase. In other
words, the privacy of the secret matters as long as it is reconstructed by an
eligible set of parties after which anyone (even an external party) can learn the
secret. Moreover, one may notice that before time T; the privacy requirement
implies security. That is, even if the adversary corrupts all the parties involved
in the protocol, it cannot learn any information about the secret.

6.2 PVTSS Construction

We present the complete PVTSS protocol in Figure [3| In what follows, we elab-
orate on a number of techniques used in our construction. In particular, it turns
out that the public verifiability requirement of the scheme demands taking dif-
ferent approaches toward realizing the lower and upper time bounds.

Handling a malicious dealer. What makes the protection mechanism chal-
lenging for PVTSS is the fact that anyone, before going through sequential
computation, should be able to check the correctness of sharing including con-
sistency, validity, and extractability of the shares having a set of encrypted shares
locked by the dealer. That is to say, a solution should simultaneously ensure (1)
all shares lie on the same polynomial, (2) locked encrypted shares contain the
committed shares, and (3) shares are obtainable in time T}, all with respect to
some public information. Thus, this essentially takes away deploying VTC prim-
itive that we used for VTSS construction. We first explore how to guarantee
consistency and verifiability followed by our approach regarding extractability.

3 This property is presented as IND1-Secrecy in [311/49).



18 A. Kavousi et al.

Blinded DLEQ. Our solution to address the first two aforementioned guaran-
tees is based on having the dealer blind each encrypted shares s; using some
randomness 3;, put the randomness into a puzzle Z;, and publish all the puz-
zles together with locked encrypted shares and commitments for ¢ € [n]. The
dealer needs to show that the locked encrypted shares contain the same shares
as the commitments, while the consistency of the shares can be checked using
the commitments (as discussed in Section . To do so, we slightly modify the
DLEQ proof (Section and construct a Sigma protocol we call blinded DLEQ
prooﬁ In fact, it allows proving simultaneous knowledge of two witnesses, one
of which is common in two statements. The following is a protocol IIgpLgq for
the language

Lepieq = {(91,2,92,93,9) | I, B) :x =g Ny = gélgg}

1. P chooses two random elements w1, us & Zg, computes a1 = g;"* and ap =
95" g5?, and sends them to V.

2. V sends back a randomly chosen challenge ¢ & ZLq.
3. P computes 71 = u1 + ca and r9 = us 4+ ¢f and sends them to V.
4. V checks if both ¢ = a12° and g5 g5* = azy® hold.

Theorem 3. The protocol IlgpLeq is a public-coin honest-verifier zero-knowledge
argument of knowledge corresponding to the language LgpLEQ-

The proof of the theorem can be found in Appendix

Cut-and-choose technique. What is left to discuss is how the dealer convinces
the parties they can obtain their shares in time 77. This is equivalent to saying
the TLP Z; has indeed the B; embedded. A promising way to show the cor-
rectness of puzzle generation is utilizing the cut-and-choose technique that has
been explored in previous works |7,/53]. At a high level, this technique forces a
sender to behave correctly by randomly opening a (fixed) subset of puzzles it
has already sent to the receiver based on the receiver’s choice. We show that it
is possible to deploy the cut-and-choose technique in our construction without
sacrificing security according to two observations. First, as we already assume
the existence of a randomness beacon for establishing short-lived proofs, we can
utilize a beacon output b’ as a random challenge for the dealer to sample a set
of ¢ locked encrypted share&ﬂ Second, since opening just reveals a set of size ¢ of
encrypted shares, we are still guaranteed that the secret remains hidden up to
time 77, no matter what. Moreover, there is no need to deploy a range proof as
each party is supposed to open its corresponding locked encrypted share, which
is not among the opened ones by the dealer.

Realizing an upper time bound. Due to the public verifiability, PVTSS
protocol is executed over a public bulletin board. As a result, the secret may

4 We are not aware of the existence of such protocol under different name in the
literature.

5 Instead of using &', the dealer can compute a hash function, modeled as a random
oracle, on public sharing material and use the output as a random challenge.



Timed Secret Sharing 19

be reconstructed /used by any external party. This leads us to deploy short-lived
proofs (SLPs) [3] for realizing an upper time bound in the construction. Observe
that the use of SLPs allows tying the correctness of the system to time, meaning
that the secret is only guaranteed to be correct if being reconstructed before
the upper time bound. Correctness intuitively states if the Distribution phase
succeeds, then the Reconstruction phase will output the same secret initially
shared by the dealer. Let us now briefly explain how we make use of SLPs in our
construction.

Upper time bound with SLPs. Our approach is to take advantage of the forgeabil-
ity property of SLPs in our PVTSS construction by piggybacking on the proof of
decryptions m; generated by each party P; as part of the Reconstruction phase,
turning them into short-lived proofs where their expiration time matches the
upper time bound T5. So, given the properties of short-lived proofs and also the
fact that the secret is randomly distributed in SCRAPE PVSY] the correctness
of a share submitted by a party P; is only guaranteed if being observed before T,
otherwise it could be an invalid share accompanied with a valid proof. As shown
in 3], a short-lived proof for any arbitrary relation R for which there exists a
Sigma protocol can be efficiently constructed. For completeness, we present the
short-lived proof for a relation R using pre-computed VDF's in Figure |5l In our
protocol we make a black box use of short-lived DLEQ proof generation de-
noted by DLEQ.SLP and verification denoted by DLEQ.SLV. It is required that
the beacon value b used to compute 7; is not known until the time 77, with
T =T, — T; being the time parameter for the underlying VDF. Therefore, any-
one verifying the proof before Tb knows that it could have not been computed
through forgery. We highlight that, to deploy short-lived proofs we need to use
the DDH-based version of SCRAPE PVSS which its DLEQ proof comes with

knowledge soundness property.

Remark 1. Recently, there has been a number of works focusing on the no-
tion of forgeability over time, particularly for developing short-lived signature or
forward-forgeable signature [3}52]. To the best of our knowledge, the work of [3]
is the only one exploring the time-based forgeability in proof systems. This in
turn enables us to make use of their primitive to provide the upper time bound
for PVTSS in a way, relating the correctness of the secret reconstruction to time.

Remark 2. We make no assumption on the availability of an online verifier who
observes the protocol over time. In fact, due to the characteristic of SLPs, their
use is meaningful when the verifier does not necessarily remain online during
the reconstruction period [T, T»]; otherwise, it can always reject the proofs sent
afterwards, negating the forgeability property. Moreover, as pointed out in [3],
convincingly timestamping the messages published on the bulletin board is also
opposed to the usability of SLPs.

5 This essentially implies any set of shares is indistinguishable from a set of random
strings. Note that in normal Shamir secret sharing this is limited to a set of size at
most ¢ shares as the secret is not uniformly distributed [10].



20 A. Kavousi et al.

In our PVTSS construction, we explicitly feed the upper time bound T, and
a beacon value b in two algorithms, PVTSS.Recover and PVTSS.Verify,. This is
essentially due to the necessity of the knowledge of time parameters T' = Ty — T}
and b for short-lived proof generation and verification. Moreover, as pointed
out in [3], T does not need to be hardcoded when PVTSS.Setup is run. This
allows using VDFs with any time parameter T > T, while still generating
short-lived proofs with respect to time 7. That is, even if different shareholders
use different time parameters with 77 > T for their VDF evaluations, only those
proofs observed before time 1" are convincing.

Theorem 4. If the time-lock puzzle TLP, short-lived proofs SLP, and Scrape
PVSS are secure, then publicly verifiable timed secret sharing protocol Ilpytss
presented in Figure [3 satisfies soundness, t-privacy, and security, w.r.t. defini-

tions and [37) respectively.
For a proof of theorem see Appendix

7 Decrementing-threshold Timed Secret Sharing (DTSS)

7.1 Secret Sharing with Additional Shares

A threshold secret sharing scheme guarantees t-security, preventing an adver-
sary controlling any set of parties of size < t from learning the secret. There is
also t + 1-robustness assumptiorﬂ ensuring the availability of a sufficient num-
ber of valid shares during the reconstruction phase. However, it is natural to
challenge such a liveness assumption and consider a scenario in which a large
fraction of honest parties goes offline, particularly when having a determined
period for reconstruction, putting the system under threat of failure (i.e., lack
of availability). To be concrete, a possible scenario that may lead to having less
than a threshold of honest parties available is explored in [54] known as denial
of spending (DoSp) attack. Here, the adversary can carry out an attack against
honest parties to control, say 51% of parties, while the reconstruction threshold
to spend a multisig transaction is, say 52%. Consequently, the set of available
honest parties cannot reach the threshold and their possible investment will be
remained locked. We can extend this to a secret sharing setting where honest
parties may not reach the threshold by themselves, at least for some time (e.g.,
the upper time bound).

Our goal is to mitigate this liveness assumption using the capabilities of
time-based cryptography. We observe this is feasible by having the dealer pro-
vide parties with additional time-locked shares. By additional, we mean some
shares other than the individual one that each party already receives during the
distribution phase of the protocol. For instance, using Shamir secret sharing,
the additional shares are computed by evaluating the sharing polynomial f(-)
at some distinct publicly known points. So, even if there is less than a threshold

7 Note that this is the case in a malicious setting where parties may not take part in
the reconstruction phase.



Timed Secret Sharing 21

1. Initialization:
— Setup: PVTSS.Setup(1*,71) — pp, the public parameters pp include independently
chosen generators g1, g2, g3 in a DDH-hard group G, a field Z,, a hash function
H : {0,1}* — I C n with |[I| = t, and a public bulletin board. Each party P;
announces a registered public key pk; = gfki which its secret key sk; is only known
to them.

2. Distribution:
— Sharing: PVTSS.Sharing(pp, s, {pki}icin)) = {{Ci}icn), ™n}, the dealer D randomly

chooses s < Z4 and defines the secret S = gi to be shared among n parties with
public keys {pki}ic[n). The dealer computes Shamir shares f(i) = s;, commitments
v; = g5', and encrypted shares §; = pk;® for all ¢ € [n] using a degree-t Shamir
polynomial f(-), where f(0) = s. It blinds the encrypted shares {;};c[n) using

some independent randomness 3;, resulting in {c;};e[n), where ¢; = §,g§’ It then
locks every randomness f; in a TLP by running TLP.Gen(1*,7%, 8;). Let denote
C; = {¢ci, Z; }. To show the consistency and validity of the locked encrypted shares,
the dealer runs IlgpLeq resulting in proof mp =: (vi, e, 71,3, 72,;) for ¢ € [n]. Finally,
the dealer publishes the locked encrypted shares {C'};c[,) and proof 7p on a public
bulletin board.

— Share verification: PVTSS.Verify, (pp, {Ci }icin), 70, b, {Pki }icn)) — {0, 1}, the veri-
fier V first validates the consistency of the shares by sampling a code word y*~ € C*,
where y* = {31, ...,y }, and checking if H;‘Zl vjyjL = 1. It then checks the proof
mp is valid. Using a beacon value b’ released after the completion of the sharing
step, the dealer randomly opens a set H(b') — I of locked encrypted shares by pub-
lishing their corresponding randomness ; and encrypted share §;. So, the verifier
V can check the puzzles are correctly constructed by invoking TLP.Gen algorithm
and comparing the encrypted share sent by the dealer with the one being unlocked
using ;.

3. Reconstruction:

— Recovering: PVTSS.Recover(pp, Ci, pki, ski, b, To) — {5;,m;}, after checking the va-
lidity of sharing phase, any party P; wishing to obtain its share, unlocks the blinding
factor B; by running TLP.Solve(pp, Z;), and obtains its share 3; after decrypting 3;
as §; = §j1/5ki. Then, the party P; reveals the share §; together with a proof
m; =: {DLEQ.SLP(ski, g1, pki, 8i, i), B:} of valid decryption. Note that DLEQ.SLP
involves calling SLP.Gen for the relation Rpreq = {(g1, pki, $:, 8:; ski) } given a bea-
con value b publicly known no sooner than T;.

— Recovery verification: PVTSS.Verify,(pp, Ci, §;,mi,b,T2) — {0,1}, any (external)
verifier V' can check the validity of published share 3, via DLEQ.SLV
(i, 91, pks, 8, 8;). This involves calling SLP.Verify. Note that having Cj, the ver-
ifier first obtains §; using f;.

— Pooling: PVTSS.Pool(pp, S, T2) — s, upon having sufficient number of shares (>
t + 1) received before time T, denoted by S, anyone can reconstruct the secret
S = gi using Lagrange interpolation in the exponent.

Fig. 3. PVTSS protocol IIpyTss




22 A. Kavousi et al.

of parties available at the reconstruction period (i.e., [Ty, 75]), the remaining
parties will be able to open the additional time-locked shares after carrying out
some computation and retrieve the secret. We remark that a large body of liter-
ature on threshold secret sharing schemes assumes all the participating parties,
not only those interacting in the reconstruction phase, learn the secret |164[35].
Given this, we argue that the availability of a threshold number of additional
time-lock shares at the proper time (i.e., T) does not violate the security of the
system since it enables all the parties eventually learn the secret at the same
point via sequential computation if they have not already learned idﬂ

To focus on the core problem, which is preserving the robustness of the system
in case of unavailability of a threshold of honest parties, we assume the additional
time-locked shares are honestly generated. However, should a malicious dealer
attempt to misbehave, this assumption can be lifted by using mechanisms similar
to the techniques used in the previous sections.

Pessimistic condition. The setting we are considering can be referred to as pes-
simistic condition, where the number of honest parties drops lower than the
required robustness threshold of n/2 in the synchronous model [20]. Note that
this is rather opposite the optimistic condition in the literature |11], demanding
the number of honest parties to be the super majority (i.e., more than 3n/4) for
some property (i.e., responsiveness) to hold.

Releasing additional shares in one go. We provide a simple extension to the
VTSS protocol IIytss presented in Figure [2| by having the dealer embed ¢ addi-
tional shares concatenated in a TLP, offering robustness even if all but one honest
party goes offline during the reconstruction period. We present the extension in

Appendix

7.2 Decrementing-threshold Timed Secret Sharing (DTSS)

It is possible to derive a trade-off between time and fault tolerance by having the
dealer release each additional time-locked share periodically at different points
in time. The consequence of this gradual release is twofold. Firstly, if necessary,
it enables honest parties requiring some more shares (not necessarily ¢) to re-
construct the secret without going through the sequential computation for the
whole period of time i.e., [Ty, To]. In fact, they can stop working up to a point
where a sufficient number of additional shares is gained. Secondly, as time goes
by and the reconstruction is not initiated, the adversary can get more additional
shares by investing computational effort, leading to a gradual lessening of the
fault tolerance of the system. Interestingly, this feature happens to be useful to
break public goods game as it ties the security of the system to time; the later
parties initiate the reconstruction, the more chances the adversary learns the
secret.

8 We stress that our security argument relies on the conjecture that the adversary
does not have an advantage over honest parties with respect to performing a certain
number of steps of sequential computation [4§].



Timed Secret Sharing 23

7.3 DTSS Definition

Now, we present a formal definition for our new scheme called decrementing-
threshold timed secret sharing (DTSS).

Definition 4 (Decrementing-threshold Timed Secret Sharing). A (¢,n)
DTSS scheme consists of a tuple of algorithms (DTSS.Setup, DTSS.Sharing,
DTSS.ShaRecover, DTSS. Verify, DTSS.AddRecover, DTSS.Pool) as follows.

1. Initialization:

— Setup: DTSS.Setup(1*,Ty,t) — {pp, pk, sk}, on input security parameter
A, lower time bound Ty, and a value t, generates public parameters pp and
key pair (pk, sk) to be used for generating additional locked shares by the
dealer D.

2. Distribution:

— Sharing: DTSS.Sharing(pp, s, pk, sk) — {Ci,v,{O;};e}, on input pp, a
secret s, and a key pair (pk, sk), generates locked share C; with time pa-
rameter T1 together with commitment to shares v for each party P; for
i € [n]. Moreover, it outputs t additional locked shares {O;} ey, with O;
being locked with time parameter (j + 1)Ty. The algorithm us run by D.

3. Reconstruction:

— Share recovery: DTSS.ShaRecover(pp, C;) — s;, on input pp, C;, and pk,
outputs a share s;. The algorithm is run by each party P;.

— Recovery verification: DTSS.Verify(pp, s;, v) — {0, 1}, on input pp, s;, and
v, checks the validity of the received share. The algorithm is run by a verifier
Vep.

— Additional share recovery: DTSS.AddRecover(pp, pk,{O;} ) — {s)}, on
input pp, pk, and {O;} e[y, forcibly outputs the additional share s; at time
(j + D)T1. The algorithm is run by anyone in P wishing to obtain some
additional shares.

— Pooling: DTSS.Pool(pp, S,T>) — s, on input pp and a set S of shares
(where |S| >t and t € pp), outputs the secret s if Ty has not elapsed. The
algorithm is run by V.

We could also include a verification algorithm VTSS.Verify, for a verifier to
check the validity of the presented additional share by a participating party. We
refrain from formalizing this algorithm since we implicitly assume all the parties
involved in reconstruction retrieve the additional time-locked shares, negating
the verification. However, such a verification algorithm can introduce efficiency
as it allows reconstruction of the secret while having only one party solve the
puzzles containing additional time-locked shares and prove their correctness to
others.

Formally, a DTSS scheme must provide the following properties.

Definition 4.1 (Correctness). A DTSS satisfies correctness if for all secret
s € Sy and all 7 € [n] it holds that



24 A. Kavousi et al.

DTSS.Setup(1*, T}, t) — pp,
DTSS.Sharing(pp, s)
. o y_ 1 — U{Z}iew {Oi}ienm},
Tyt ST ) -
— {87;, 71'1‘},
DTSS.AddRecover(pp, {O; }ict)
= {sitiemagizt

Pr

Definition 4.2 (Verifiability). A DTSS scheme is verifiable if there exists a
negligible function p such that for all PPT adversaries A, all A € N, and i € [n],
it holds that

DTSS.Setup(1*, T1,t) — {pp, pk, sk},

— 1. A(pp) — (si7v7')7
Prob =1 DTSS Verify(pp, s, v), A Bs st | = )
DTSS.Sharing(pp, s, pk, sk) — {v,-}

Definition 4.3 (Privacy). A DTSS satisfies privacy if for all algorithms A
running in time 7' < 577, where 1 < j < ¢, with at most 73 parallel processors,
there exists a simulator Sim and a negligible function p such that for all secret
s € Sy and VA € N it holds that

DTSS.Setup(1*,T1) — {pp, pk, sk},
Pr | A(pp, pk, s, {Ci}icin), v, {O;}jem) = 1: A1, pp) — s -
DTSS.Sharing(pp, s) — {Ci,v,{O0;}je14}

DTSS.Setup(lA,Tl) — {pp, pk, sk},
Pr A(pp,plc,s/, {Ci}icm), v, {Oj}jery) = 1: A(lk,pp) -5 < ()
Sim(pp) = {Ci, v,{O;}je1}

Definition 4.4 (Security). Let 27y,...,(¢t + 1)T; be times at which each ad-
ditional time-locked share is forcibly obtained. A DTSS is secure if prior to
(j + )Ty, where 1 < j < t, the adversary controlling at most < ¢t — (j — 1)
parties learns no information about s € Sy in a computational sense. Thus, it
holds:

DTSS.Setup(1*, T4, t) — {pp, pk, sk}
DTSS.Sharing(pp, s) = {C:,{O;} e,

Pr | A(pp,pk,S’,T>) — s : DTSS.ShaRecover(pp, C;) — si, < p(A)
DTSS.AddRecover(pp, pk, {O;}jery)
= {sih1<j <t

Definition 4.5 (Robustness). A DTSS is robust if each party in P can eventu-
ally reconstruct the secret s, either after receiving a sufficient number of other
parties’ shares and/or obtaining the additional time-locked shares.



Timed Secret Sharing 25

DTSS.Setup(1*, T}, t) — {pp, pk, sk}
DTSS.Sharing(pp7 S) — {C“ {Oj}je[t]}7
DTSS.ShaRecover(pp, C;) — s,
DTSS.AddRecover(pp, pk, {O;}ep)) — {85}

Pr |DTSS.Pool(pp, S,T2) — s :

7.4 DTSS Construction

We present a construction of DTSS in Figure 4l As mentioned, we would like
a protocol in which anyone is able to obtain each additional share s’ at time
(j + 1)T1 given that dealer’s role must end with the distribution phaseﬂ In
a naive way, the dealer should create ¢ puzzles each embedding one additional
share to be opened at t different points in time. However, this inefficient solution
comes with a high computation cost as anyone wishing to access the shares needs
to solve each puzzle separately in parallel, demanding up to T} 22‘21 4 number
of squaring. To get away with this issue, we use multi-instance time-lock puzzle
(MTLP) [1], a primitive allowing sequential release of solutions where the overall
computation cost of solving ¢ puzzles is actually equal to that of solving only
the last one.

Theorem 5. If the multi-instance time-lock puzzle MTLP and verifiable timed
secret sharing VTSS are secure, then our DTSS protocol Ilptss presented in
Figure[]] satisfies the properties described in Section[7.3

For a proof of theorem see Appendix

Remark 3. By looking closely, we see the trade-off between time and fault toler-
ance can be added as a property to any threshold secret sharing scheme. More
precisely, the gradual release of fault tolerance over time is implied by the release
of the shares and not the type of underlying secret sharing scheme. In addition,
the use of additional time-locked shares implicitly provides an upper time bound.
This is because by the time T5 — which the last puzzle is supposed to open — the
secret is revealed to all parties in P.

8 Discussion

In the following, we explore and discuss several aspects of our constructions.

TSS as a generalization of secret sharing. A timed secret sharing scheme can
be thought of as a time-based generalization of a normal secret sharing scheme.
That is, theoretically, if we set 77 = 0 and T5 = oo, then the resulting scheme is
a normal secret sharing. Also, the independency of the methods used to realize
the lower and upper time bounds makes it possible to consider them separately
depending on applications.

9 Without loss of generality we assume Th = (t + 1)T1, accommodating the periodic
release of additional shares.



26

A. Kavousi et al.

1

. Initialization:

— Setup: DTSS.Setup(1*,T1,t) — {pp, pk, sk}, the dealer D invokes two algorithms of
VTSS.Setup(1*,T1) and MTLP.Setup(1*,T1,t + 1), and publishes the set of public
parameters pp, pk.

2. Distribution:

— Sharing: DTSS.Sharing(pp, s, pk, sk) — {Ci,v,{O;};c[y}, the dealer D first picks
a secret s < Zq and invokes VTSS.Sharing(pp,s) to generate n locked shares
{Ci}iern) and v. Moreover, it computes ¢ additional shares f(a;) = s} for j € [t],
where f(0) = s and {au,...,a¢} are some known distinct points. Finally, it invokes
MTLP.Gen(m, pk, sk), where m = {1,s,...,s;} to generate an MTLP containing
{si}jen-

3. Reconstruction:

— Share recovery: DTSS.ShaRecover(pp, C;) — s;, each party P; runs VTSS.Recover
(pp, C;) to recover its share s;.

— Recovery verification: DTSS.Verify(pp, s;,v) — {0,1}, any reconstructor V runs
VTSS. Verify, (pp, si, v) to check the validity of the published share s;.

— Additional share recovery: DTSS.AddRecover(pp, pk,{O;}jci)) — {s)}jery, any-
one wishing to obtain additional time-locked shares {s}};c;y runs MTLP.Solve
(pp:{O;}jem)-

— Pooling: DTSS.Pool(pp,S,T2) — s, upon having sufficient number of valid shares

(i.e.,> t + 1), the reconstrctor V' € P reconstructs the secret s using Lagrange

interpolation at f(0).

Fig. 4. DTSS protocol IIprss

On the setup phase. In all of our schemes, Setup algorithm is responsible to
generate a set of public parameters pp, encapsulating the parameters for the
underlying secret sharing and time-based cryptographic primitive. In particu-
lar, our VTSS construction in Figure [2| requires a trusted setup to generate the
parameters for the underlying VTC primitive. This is due to the linearly homo-
morphic TLP of [41] deployed in VTC construction. In fact, the functionality
of the primitive heavily depends on such an assumption; otherwise, either the
puzzle is not solvable or one can efficiently solve it upon receipt. Using class
groups of imaginary quadratic fields [14] as a family of groups of unknown or-
der instead of the well-known RSA group is an option to reduce the trust, but
comes with higher (offline) computational investment for the puzzle generator
to compute the parameters through sequential computation [41]. Observe that
deploying the class groups solely does not eliminate the need for a trusted setup
as it is still feasible that malicious sender fools a receiver into accepting locked
shares that will never be opened. We propose another construction for VT'SS
in Figure [6] based on AVTC primitive [43] that has a transparent setup. More-
over, the VDF primitive used in SLPs can be instantiated efficiently via class
groups [58] without making any trusted setup assumption.

On the use of SLPs. As already mentioned, by deploying SLPs in PVTSS proto-
col we strengthen the notion of upper time bound as the system is safely usable



Timed Secret Sharing 27

until 75. In fact, as we show next, after T5 any reconstruction fails with over-
whelming probability. This necessitates the availability of a reconstructor during
the protocol execution for a correct reconstruction. Moreover, we deploy short-
lived proofs using precomputed VDF's [3] which do not offer reusable forgeability,
i.e., forging a proof for any statement v without computing a new VDF. How-
ever, this essentially fits a secret sharing setting (in particular, PVSS) which is
inherently single-use.

Failure probability. As a result of deploying SLPs, here we briefly analyze the
probability of a reconstruction failure after 7. Let ¢ be the number of adver-
sarial shares and n be the total number of shares publicly available. Given that
the incorporation of even one invalid share results in an invalid reconstruction
and the fact that shares are uniformly distributed, the success probability can
be computed as p = Z—;, where p; = (?_;lt) and pg = (til). We can easily show
that by a proper choice of the parameters n,t the reconstruction fails with over-
whelming probability. Setting ¢ = [5] — 1, we have p < n2~([Z141) which is a
negligible value in A for a choice of n = A.

Breaking public goods game. As mentioned, one of the promising ways to break
public goods game is to reward those parties who publish their shares sooner
[4,137]. That is, the shareholder receives some reward if its submitted share is
among the first £ 4+ 1 shares published on the chain. This in turn motivates
each shareholder to show up sooner. We believe our two ideas, namely using
short-lived proofs and gradual release of additional shares, can be considered as
orthogonal methods for this purpose. More precisely, using SLPs forces parties
to publish their shares before some time, otherwise, they may not be able to
recover the correct secret. Moreover, using a gradual release of additional shares
can also play the same role; however, by causing the threat of security reduction
over time. Consequently, shareholders are motivated to act as soon as possible
to avoid any pitfalls.

Acknowledgements. The authors would like to thank Dan Ristea for initiating
the idea of secret sharing with additional shares. Aydin Abadi was supported in
part by REPHRAIN: The National Research Centre on Privacy, Harm Reduction
and Adversarial Influence Online, under UKRI grant: EP/V011189/1.

References

1. A. Abadi and A. Kiayias. Multi-instance publicly verifiable time-lock puzzle and
its applications. In International Conference on Financial Cryptography and Data
Security, pages 541-559. Springer, 2021.

2. G. Almashagbeh, F. Benhamouda, S. Han, D. Jaroslawicz, T. Malkin, A. Nicita,
T. Rabin, A. Shah, and E. Tromer. Gage mpc: Bypassing residual function leakage
for non-interactive mpc. Cryptology ePrint Archive, 2021.

3. A. Arun, J. Bonneau, and J. Clark. Short-lived zero-knowledge proofs and
signatures. In Advances in Cryptology-ASIACRYPT 2022: 28th International



28

10.

11.

12.

13.

14.

15.

16.

17.

18.

A. Kavousi et al.

Conference on the Theory and Application of Cryptology and Information Secu-
rity, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part III, pages 487-516.
Springer, 2023.

Z. Avarikioti, E. Kokoris-Kogias, R. Wattenhofer, and D. Zindros. B rick: Asyn-
chronous incentive-compatible payment channels. In Financial Cryptography and
Data Security: 25th International Conference, FC 2021, Virtual Event, March 1-5,
2021, Revised Selected Papers, Part I 25, pages 209-230. Springer, 2021.

C. Badertscher, P. Gazi, A. Kiayias, A. Russell, and V. Zikas. Dynamic ad hoc
clock synchronization. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 399-428. Springer, 2021.

A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu. Password-protected secret shar-
ing. In Proceedings of the 18th ACM conference on Computer and Communications
Security, pages 433-444, 2011.

W. Banasik, S. Dziembowski, and D. Malinowski. Efficient zero-knowledge con-
tingent payments in cryptocurrencies without scripts. In Computer Security—
ESORICS 2016: 21st FEuropean Symposium on Research in Computer Security,
Heraklion, Greece, September 26-30, 2016, Proceedings, Part II 21, pages 261-280.
Springer, 2016.

D. Beaver, K. Chalkias, M. Kelkar, L. K. Kogias, K. Lewi, L.. de Naurois, V. Nico-
laenko, A. Roy, and A. Sonnino. Strobe: Stake-based threshold random beacons.
Cryptology ePrint Archive, 2021.

A. Beimel, Y. Ishai, and E. Kushilevitz. Ad hoc psm protocols: Secure computa-
tion without coordination. In Advances in Cryptology-EUROCRYPT 2017: 36th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30-May 4, 2017, Proceedings, Part III 36, pages
580-608. Springer, 2017.

M. Bellare, W. Dai, and P. Rogaway. Reimagining secret sharing: Creating a safer
and more versatile primitive by adding authenticity, correcting errors, and reduc-
ing randomness requirements. Proceedings on Privacy Enhancing Technologies,
2020(4), 2020.

A. Bhat, A. Kate, K. Nayak, and N. Shrestha. Optrand: Optimistically responsive
distributed random beacons. Cryptology ePrint Archive, 2022.

D. Boneh and M. Naor. Timed commitments. In Annual international cryptology
conference, pages 236-254. Springer, 2000.

J. Bonneau, J. Clark, and S. Goldfeder. On bitcoin as a public randomness source.
Cryptology ePrint Archive, 2015.

J. Buchmann and H. C. Williams. A key-exchange system based on imaginary
quadratic fields. Journal of Cryptology, 1(2):107-118, 1988.

J. Burdges and L. D. Feo. Delay encryption. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 302—-326. Springer,
2021.

I. Cascudo and B. David. Scrape: Scalable randomness attested by public entities.
In International Conference on Applied Cryptography and Network Security, pages
537-556. Springer, 2017.

I. Cascudo, B. David, L. Garms, and A. Konring. Yolo yoso: fast and simple encryp-
tion and secret sharing in the yoso model. In Advances in Cryptology-ASIACRYPT
2022: 28th International Conference on the Theory and Application of Cryptology
and Information Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part
I, pages 651-680. Springer, 2023.

M. Chase, H. Davis, E. Ghosh, and K. Laine. Acsesor: A new framework for
auditable custodial secret storage and recovery. Cryptology ePrint Archive, 2022.



19.

20.

21.

22.

23.

24.

23.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Timed Secret Sharing 29

D. Chaum and T. P. Pedersen. Wallet databases with observers. In Annual inter-
national cryptology conference, pages 89—105. Springer, 1992.

B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and
achieving simultaneity in the presence of faults. In 26th Annual Symposium on
Foundations of Computer Science (sfcs 1985), pages 383-395. IEEE, 1985.

P. Chvojka, T. Jager, D. Slamanig, and C. Striecks. Versatile and sustainable
timed-release encryption and sequential time-lock puzzles. In Furopean Symposium
on Research in Computer Security, pages 64—85. Springer, 2021.

J. Clark and U. Hengartner. On the use of financial data as a random beacon.
Evt/wote, 89, 2010.

Y. Dodis and D. H. Yum. Time capsule signature. In International Conference on
Financial Cryptography and Data Security, pages 57-71. Springer, 2005.

Y. Doweck and I. Eyal. Multi-party timed commitments. arXiv preprint
arXiv:2005.04883, 2020.

S. D. Dwilson. What happened to julian assange’s dead man’s switch
for the wikileaks insurance files? https://heavy.com/news/2019/04/
julian-assange-dead-mans-switch-wikileaks-insurance-files/, Apr. 2019.
Section: News.

P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In
28th Annual Symposium on Foundations of Computer Science (sfcs 1987), pages
427-438. IEEE, 1987.

A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In Conference on the theory and application of
cryptographic techniques, pages 186—194. Springer, 1986.

J. A. Garay and M. Jakobsson. Timed release of standard digital signatures.
In International Conference on Financial Cryptography, pages 168—182. Springer,
2002.

J. Groth. On the size of pairing-based non-interactive arguments. In Advances
in Cryptology—-EUROCRYPT 2016: 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II 35, pages 305-326. Springer, 2016.

J. Y. Halpern, B. Simons, R. Strong, and D. Dolev. Fault-tolerant clock synchro-
nization. In Proceedings of the third annual ACM symposium on Principles of
distributed computing, pages 89-102, 1984.

S. Heidarvand and J. L. Villar. Public verifiability from pairings in secret sharing
schemes. In International Workshop on Selected Areas in Cryptography, pages
294-308. Springer, 2008.

L. Heimbach and R. Wattenhofer. Sok: Preventing transaction reordering manip-
ulations in decentralized finance. arXiv preprint arXiv:2203.11520, 2022.

Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Zero-knowledge from secure
multiparty computation. In Proceedings of the thirty-ninth annual ACM symposium
on Theory of computing, pages 21-30, 2007.

S. Jarecki, A. Kiayias, and H. Krawczyk. Round-optimal password-protected se-
cret sharing and t-pake in the password-only model. In Advances in Cryptology—-
ASTACRYPT 2014: 20th International Conference on the Theory and Application
of Cryptology and Information Security, Kaoshiung, Taiwan, ROC, December 7-11,
2014, Proceedings, Part II 20, pages 233—-253. Springer, 2014.

A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polyno-
mials and their applications. In Advances in Cryptology-ASIACRYPT 2010: 16th


https://heavy.com/news/2019/04/julian-assange-dead-mans-switch-wikileaks-insurance-files/
https://heavy.com/news/2019/04/julian-assange-dead-mans-switch-wikileaks-insurance-files/

30

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

A. Kavousi et al.

International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Singapore, December 5-9, 2010. Proceedings 16, pages 177-194.
Springer, 2010.

J. Knapp and E. A. Quaglia. Fair and sound secret sharing from homomorphic
time-lock puzzles. In Provable and Practical Security: 14th International Confer-
ence, ProvSec 2020, Singapore, November 29-December 1, 2020, Proceedings 14,
pages 341-360. Springer, 2020.

E. Kokoris-Kogias, E. C. Alp, L. Gasser, P. Jovanovic, E. Syta, and B. Ford.
Calypso: private data management for decentralized ledgers. Proceedings of the
VLDB Endowment, 14(4):586-599, 2020.

Y. Lindell. Fast cut-and-choose-based protocols for malicious and covert adver-
saries. Journal of Cryptology, 29(2):456-490, 2016.

Y. Liu, Y. Kang, T. Zou, Y. Pu, Y. He, X. Ye, Y. Ouyang, Y. Zhang, and Q. Yang.
Vertical federated learning. CoRR, 2022.

A. F. Loe, L. Medley, C. O’Connell, and E. A. Quaglia. Tide: A novel approach
to constructing timed-release encryption. Cryptology ePrint Archive, 2021.

G. Malavolta and S. A. K. Thyagarajan. Homomorphic time-lock puzzles and ap-
plications. In Advances in Cryptology—CRYPTO 2019: 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceed-
ings, Part I, pages 620-649. Springer, 2019.

D. Malkhi and P. Szalachowski. Maximal extractable value (mev) protection on a
dag. arXiv preprint arXiv:2208.00940, 2022.

Y. Manevich and A. Akavia. Cross chain atomic swaps in the absence of time via
attribute verifiable timed commitments. In 2022 IEEE 7th European Symposium
on Security and Privacy (EuroSE&P), pages 606-625. IEEE, 2022.

R. J. McEliece and D. V. Sarwate. On sharing secrets and reed-solomon codes.
Communications of the ACM, 24(9):583-584, 1981.

L. Medley, A. F. Loe, and E. A. Quaglia. Sok: Delay-based cryptography. Cryp-
tology ePrint Archive, 2023.

K. Pietrzak. Simple verifiable delay functions. In 10th innovations in theoretical
computer science conference (itcs 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018.

I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of
the society for industrial and applied mathematics, 8(2):300-304, 1960.

R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. 1996.

A. Ruiz and J. L. Villar. Publicly verifiable secret sharing from paillier’s cryptosys-
tem. In WEWoRC 2005-Western Furopean Workshop on Research in Cryptology.
Gesellschaft fiir Informatik eV, 2005.

B. Schoenmakers. A simple publicly verifiable secret sharing scheme and its appli-
cation to electronic voting. In Annual International Cryptology Conference, pages
148-164. Springer, 1999.

A. Shamir. How to share a secret. Communications of the ACM, 22(11):612-613,
1979.

M. A. Specter, S. Park, and M. Green. {KeyForge}:{Non-Attributable} email from
{Forward-Forgeable} signatures. In 30th USENIX Security Symposium (USENIX
Security 21), pages 1755-1773, 2021.

S. Srinivasan, J. Loss, G. Malavolta, K. Nayak, C. Papamanthou, and S. A. Thya-
garajan. Transparent batchable time-lock puzzles and applications to byzantine
consensus. Cryptology ePrint Archive, 2022.



54

55.

56.

57.

58.

Timed Secret Sharing 31

S. A. K. Thyagarajan, A. Bhat, G. Malavolta, N. Dé&ttling, A. Kate, and
D. Schréder. Verifiable timed signatures made practical. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security, pages
1733-1750, 2020.

S. A. K. Thyagarajan, G. Castagnos, F. Laguillaumie, and G. Malavolta. Efficient
cca timed commitments in class groups. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pages 2663—-2684, 2021.
S. A. K. Thyagarajan, T. Gong, A. Bhat, A. Kate, and D. Schréder. Open-
square: Decentralized repeated modular squaring service. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security, pages
3447-3464, 2021.

V. Vaikuntanathan, A. Narayanan, K. Srinathan, C. P. Rangan, and K. Kim.
On the power of computational secret sharing. In Progress in Cryptology - IN-
DOCRYPT 2003, 4th International Conference on Cryptology in India, New Delhi,
India, December 8-10, 2003, Proceedings, 2003.

B. Wesolowski. Efficient verifiable delay functions. In Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 379-407.
Springer, 2019.



32 A. Kavousi et al.

A Cryptographic Building Blocks

A.1 Time-lock Puzzles (TLP)

Definition 5 (Time-lock Puzzle). A time-lock puzzle (TLP) consists of the
following two algorithms:

1. TLP.Gen(1*,T,s) — Z, a probabilistic algorithm that takes time parameter T
and a secret s, and generates a puzzle Z.

2. TLP.Solve(T, Z) — s, a deterministic algorithm that solves the puzzle Z and
retrieves the secret s.

We recall the correctness and security definition of standard time-lock puz-
zles:

Correctness [41]. A TLP scheme is correct if for all A € N, all polynomials T'(-)
in A, and all s € Sy, it holds that

Pr [TLP.Solve(T'()\), Z) — s : TLP.Gen(1*,T()\),s) — Z] =1

Security |41]. A TLP scheme is secure with gap e < 1 if there exists a poly-

nomial 7'(+) such that for all polynomials T'(-) > T'(-) and every polynomial-size
adversary A = {A)}ren of depth < T()), there exists a negligible function
u(+), such that for all A € N and sg, s; € {0,1}* it holds that

Pr [A(Z) — b: TLP.Gen(1*, T(\), 53) — Z,b & {0,1}] < % + p(N)

In particular, the seminal work of [48] introduced the notion of encrypting
to the future using an RSA-based TLP. Loosely speaking, the sender encrypts a
message m under a key k derived from the solution s to a puzzle Z. So, anyone
can obtain m after running TLP.Solve(7T, Z) and learning the key.

A.2 Homomorphic Time-Lock Puzzles (HTLP)

Definition 6 (Homomorphic Time-Lock Puzzles [41]). Let C = {Ci}xren
be a class of circuits and Sy be a finite domain. A homomorphic time-lock puzzle

(HTLP) with respect to C and with solution space Sy is a tuple of algorithms
(HTLP.Setup, HTLP.Gen, HTLP.Solve, HTLP.Eval) as follows.

1. HTLP.Setup(1*,T) — pp, a probabilistic algorithm that takes a security pa-
rameter 1 and time parameter T, and generates public parameters pp.

2. HTLP.Gen(pp, s) — Z, a probabilistic algorithm that takes public parameters
pp and a solution s € Sy, and generates a puzzle Z.

3. HTLP.Solve(pp, Z) — s, a deterministic algorithm that takes public parame-
ters pp and puzzle Z, and retrieves a secret s.

4. HTLP.Eval(C,pp, Z1,...,Zn) — Z', a probabilistic algorithm that takes a cir-
cuit C € Cy and a set of n puzzles (Zy,...,Zy,), and outputs a puzzle Z'.



Timed Secret Sharing 33

Security [41]. An HTLP scheme (HTLP.Setup, HTLP.Gen, HTLP.Solve, HTLP.Eval)
is secure with gap e < 1 if there exists a polynomial T'(-) such that for all polyno-

mials T'(-) > T(-) and every polynomial-size adversary (A1, As) = {(A1, A2)a}ren
where the depth of A is bounded from above by T¢(\), there exists a negligible
function p(-), such that for all A € N it holds that

.A1(1>\) — (7’, S0, 51)
HTLP.Setup(1*,T(\)) — pp
b <& {01}

HTLP.Gen(pp, sp) — Z

1
Pr | A2(pp, Z,7) = b: < 3 + p(X)

The puzzle is defined over a group of unknown order and is of the form
Z = (u,v), where u = g" and v = h™¥ (1+ N)*. One notable point regarding the
construction is that a trusted setup assumption is needed to generate the public
parameters pp = (T, N, g, h), where N is a safe modulus and h = gQT. Such a
setup phase is responsible for generating the parameters as specified and keeping
the random coins secret; otherwise, either the puzzle is not solvable or one can
efficiently solve it in time ¢ < T. Having said that, the authors in [41] point out
that this assumption can be removed if construction gets instantiated over class
groups instead of an RSA group of unknown order. However, this comes at the
cost of a higher computational overhead by the puzzle generator.

A.3 Multi-instance Time-lock Puzzle (MTLP)

Definition 7 (Multi-instance Time-lock Puzzle [1]). A Multi-instance Time-
lock Puzzle (MTLP) consists of the following five algorithms.

1. MTLP.Setup(1*, T, 2) — {pk, sk,a}, a probabilistic algorithm that takes a se-
curity parameter A\, a time parameter T, and the number of puzzle instances
z, and outputs a key pair (pk, sk) and a secret witness vector d.

2. MTLP.Gen(m, pk, sk, (_i:) — {0, H}, a probabilistic algorithm that takes a mes-
sage vector m, the public-private key (pk,sk), secret witness vector (_i, and
outputs a puzzle vector o and a commitment vector h.

3. MTLP.Solve(pk, 3) — S, a deterministic algorithm that takes the public key pk
and the puzzle vector 0, and outputs a solution vector S, where s; is of form
m; || d;.

4. Prove(pk, s;) — mj, a deterministic algorithm that takes the public key pk and
a solution sj, and outputs a proof m;.

5. Verify(pk,m;, hj) — {0,1}, a deterministic algorithm that takes the public key
pk, proof mj, and commitment h;. If verification succeeds, it outputs 1, oth-
erwise 0.

Security [1]. A multi-instance time-lock puzzle is secure if for all A and T, any
number of puzzle: z > 1, any j (where 1 < j < z), any pair of randomised

10°A safe modulus is a product of two safe primes P = 2p’ +1,Q = 2¢’ + 1, where p’
and ¢’ are prime numbers.



34 A. Kavousi et al.

algorithm A : (A,, A,), where A, runs in time O(poly(jT,\)) and A, runs in
time 0(§7) < jT using at most 7(T") parallel processors, there exists a negligible
function u(.) such that

As(pk,6,7) — & MTLP.Setup(1*, A, 2) — (pk, sk, d)
s.t. A1, pk, 2) — (7, 1m)

i: (bi,0) V1< <ziby & {01}

M0 = My MTLP.Gen(®, pk, sk,d) — &

Pr

i

A.4 Verifiable Delay Function

Definition 8 (Verifiable Delay Function). A verifiable delay function (VDF)
consists of the following three algorithms:

1. VDF.Setup(1*,T) — pp, a probabilistic algorithm that takes security parame-
ter X and time parameter T, and generates system parameters pp.

2. VDF.Eval(pp,z) — {y, 7}, a deterministic algorithm that given system param-
eters pp and a randomly chosen input x, computes a unique output y and a
proof T.

3. VDF Verify(pp, z,y, ) — {0,1}, a deterministic algorithm that verifies y in-
deed is a correct evaluation of the x. If verification succeeds, the algorithm
outputs 1, and otherwise 0.

Intuitively, there are three security properties that a valid VDF should sat-
isfy. There must be a run time constraint of (1 + €)T for a positive constant € to
limit the evaluation algorithm, called e-evaluation. The VDF should have sequen-
tially, meaning no adversary using parallel processors can successfully compute
the output without executing proper sequential computation. Lastly, the VDF
evaluation should be a function with uniqueness property. That is, the verifica-
tion algorithm must accept only one output per input.

VDF constructions. Among a variety of constructions, VDFs based on repeated
squaring have gained more attention as they offer a simple evaluation function
that is more compatible with the hardware and provides better accuracy in
terms of the time needed to perform the computation. The two concurrent works
of [46,[58] suggest evaluating the function y = 22" over a hidden-order group.
Despite similarities in construction, they present two independent ways of proof
generation. Particularly, the one proposed by Wesolowski [58] enjoys the luxury
of having a constant size proof and verification cost. In addition, Wesolowski’s
construction can be instantiated over class groups of imaginary quadratic fields
[14] which do not require a trusted setup assumption.

A.5 Verifiable Timed Commitment

Definition 9 (Verifiable Timed Commitment [54]). A verifiable timed com-
mitment consists of the following algorithms:



Timed Secret Sharing 35

1. VTC.Setup(1*,T) — pp, a probabilistic algorithm that takes a security param-
eter 1* and time parameter T, and generates public parameters pp.

2. VTC.Commit(pp, s) — {C, 7}, a probabilistic algorithm that takes public pa-
rameters pp and a secret s, and generates a commitment C' and proof .

3. VTC.Verify(pp, pk, C,7) — {0,1}, a deterministic algorithm that takes public
parameters pp, a public key pk, the commitment C, and proof w, and checks
if the commitment contains a valid s with respect to pk.

4. VTC.Solve(pp, C) — s, a deterministic algorithm that takes commitment C,
and outputs a secret s.

Intuitively, a correct VTC should satisfy soundness, ensuring the commit-
ment C indeed embeds a valid secret s with respect to the pk, and privacy,
ensuring that no parallel adversary with a running time of less than 7" succeeds
in extracting s, except with negligible probability.

A.6 Sigma Protocols

Let R = {(v;w)} € VxW denote a relation containing the pairs of instances and
corresponding witnesses. A Sigma protocol X' on the (v;w) € R is an interactive
protocol with three movements between P and V as follows.

1. X.Ann(v,w) — a, runs by P and outputs a message a to V.
2. Y.Cha(v) — ¢, runs by V and outputs a message ¢ to P.

3. Y.Res(v,w,c) — r, runs by P and outputs a message r to V.

4. ¥ Ver(v,a,c,r) = {0,1}, runs by V and outputs 1 if statement holds.

A Sigma protocol has three main properties including completeness, knowl-
edge soundness, and zero-knowledge. Completeness guarantees the verifier gets
convinced if parties follow the protocol. Special soundness states that a mali-
cious prover P* cannot convince the verifier of a statement without knowing its
corresponding witness except with a negligible probability. This is formalised by
considering an efficient algorithm called extractor to extract the witness given a
pair of valid protocol transcripts with different challenges showing the computa-
tional infeasibility of having such pairs and therefore guaranteeing the knowledge
of the witness by P. The notion of zero-knowledge ensures that no information
is leaked to the verifier regarding the witness. This is formalised by consider-
ing an efficient algorithm called simulator which given the instance v, and also
the challenge ¢, outputs a simulated transcript that is indistinguishable from
the transcript of the actual protocol execution. Note that this property only
needs to hold against an honest verifier which seems to be a limitation of the
description, but allows for having much more efficient constructions compared
to generic models. The interactive protocol described above can be easily turned
into a non-interactive variant using the Fiat-Shamir heuristic [27] in the random
oracle model, making it publicly verifiable with no honest verifier assumption.



36 A. Kavousi et al.
A.7 Short-lived Proofs

Definition 10 (Short-lived Proofs). A short-lived proof scheme includes a
tuple of the following algorithms:

1. SLP.Setup(1*,T) — pp, a probabilistic algorithm that takes security parameter
A and time parameter T', and generates public parameters pp.

2. SLP.Gen(pp, v, w,b) — m, a probabilistic algorithm that takes a (v;w) € R and
a random value b, and generates a proof .

3. SLP.Forge(pp,v,b) — =, a probabilistic algorithm that takes any instance v
and a random value b, and generates a proof m.

4. SLP.Verify(pp,v, m,b) — {0,1}, a probabilistic algorithm verifying that = in-
deed is a valid short-lived proof of the instance v. If verification succeeds, the
algorithm outputs 1, and otherwise 0.

Note that the definition assumes there exists a randomness beacon which
outputs an unpredictable value b periodically at certain times. There are vari-
ous ways to implement such beacons including using a public blockchain [13],
financial market [22], and more. Such an assumption is necessary to eliminate
the need for having a shared global clock (i.e., timestamping). In fact, as parties
agree on the initial point in time (implied by b), the proof 7 tied to b must have
been observed before time T' to be convincing, otherwise might be a forgery.

SLP using Sigma protocols. Short-lived proofs can be instantiated both using
generic (non-interactive) zero-knowledge proofs and efficient Sigma protocols.
However, as shown in [3], making a Sigma protocol short-lived is rather tricky
as it needs some modification in the protocol for OR-composition to be secure
according to SLP properties. In fact, the modification is done in such a way
to let the honest prover creates an SLP in a short time without needing to
wait for time T to compute the VDF but forces the malicious prover to do the
sequential computation, preventing her from computing a forgery before time
T. More accurately, in an Or-composition the prover can convince the verifier
even if it only knows the witness to one of the relations. To do so, the verifier
lets the prover somehow cheat by using the simulator for the relation that it
does not know the witness for. Thus, having one degree of freedom the prover
chooses two sub-challenges ¢; and ¢y under the constraint that ¢; +co = ¢. Note
that the prover is free to fix one of them and compute the other one under the
constraints. The observation made in 3] to let the honest prover quickly generate
the short-lived proof is to involve the beacon b in the generation of the challenge.
Therefore, an honest prover just needs to pre-compute the VDF on a random
value b* allowing her to use it when computing the forgery by freely setting one
of the sub-challenges, say co, to b* @b and letting ¢; = ¢®co. A malicious prover,
however, should compute the VDF on demand as it does not know a witness w
for the relation R and c¢; gets fixed by the simulator, taking away the possibility
of setting cy as specified.



Timed Secret Sharing 37

1. Initialization: On input a random value b*, computes VDF.Eval(pp, b*) — {y*, 7ypr}

2. Proof generation: SLP.Gen(pp, v, w,b) — m,

— Compute X.Announce(v,w) = a
— Compute c=H(v || b] a)
— Set sub-challenge c2 = b* @b
— Compute sub-challenge ¢1 = ¢ @ ¢
— Compute X.Response(v,w,a,c1) = r
— Output m =: {a,c1,7,¢2,y", T pr}
3. Forgery: SLP.Forge(pp,v,b) — T,
— Compute X.Simulator(v) — (a, ¢1,7)
— Compute c=H(v | b] a)
Set sub-challenge c2 = ¢ ® &1
— Compute VDF.Eval(pp,b ® ¢2) = {y,7vDpr}
— Output @ =:{a,é,7,c2,y, 7vpr}
4. Proof verification: SLP.Verify(pp, v, n/7,b) — {0,1}
— Compute c=H(v || b] a)
— Accept if:
e c=c1Dco
e Y Verify(v,a,c1,7) =1
e VDF .Verify(pp,b ® c2,y, mvpr) =1

Fig. 5. Short-lived proof for a relation R = {(v; w)} using pre-computed VDFs [3]

As an optimization, some alternative ways for generating a VDF solution
by the honest prover instead of pre-computing a VDF from scratch have been
proposed by Arun et al. that we refer the reader to 3| for more details.

B Proofs

We now describe the proofs that were skipped in the main body of the paper
due to the limitation in space.

B.1 Proof of Theorem [1

Proof (sketch). Correctness is straightforward. The privacy property follows di-
rectly from that of the underlying TLP which implies the indistinguishability
of a puzzle produced by algorithm TSS.Sharing and the one produced by Sim.
Since all the puzzles are communicated through private channels, no party can
learn the other’s share after T7. Finally, the security stems from the underlying
threshold secret sharing, where a subset of shares &’ whose size is less than ¢
reveals no information about the secret s.



38 A. Kavousi et al.

B.2 Proof of Theorem [2|

Proof (sketch). Correctness is straightforward. The soundness property of the
protocol follows directly from that of the underlying Ilyt¢ primitive for every
single share s; committed with respect to the v; in v. A maliciously generated
v can pass the verification check VTSS.Verify; only with probability 1/q. A
maliciously submitted s; by P; cannot pass the verification check VTSS.Verify,,
except with negligible probability. The privacy property also follows directly
from that of the underlying ITytc which implies the indistinguishability of a
puzzle produced by VTC.Sharing and the one produced by Sim. Note that the
commitment to shares v does not reveal any information about the secret s
under the DL assumption. It is important to note that for the assumption to
hold the secret s should have a random distribution. Observe that before T} the
privacy property essentially implies the security; afterwards, the security follows
directly from that of Feldman VSS due to the security of the commitment v.

B.3 Blinded DLEQ Proof

Proof. We show that the IIgp pq satisfies the properties of a Sigma protocol.
Completeness clearly holds, as

™ _ uitco . u ca c

91" =91 =901'91 = 0w
ry ro _ uitca utcB _ ui u Ul U2\C __ c
95'95° = 95" " g3" T = 957957 (957 95%) = a2y

For knowledge soundness, given two accepting transcripts (ai,as;c;
r1,72) and (a1, aq;c’; 7], r5) the witness (o, 8) can be found as follows

’ ’ ’
T o c T, T2 __ c . ™ c/ Ty To c/
gy = a1x, go gyt = a2y 5 gy = a1, go gzt = a2y

r1i-r]
7

’
T1—T]

91 =17 o=y

c—c

r2=rh

oy r'e v ’
1, 72—Ty c—c

95 gy P =y e y=g5g;"

Hence, the witness § can be found as 8 = (ro — 14)/(c — ) given the witness
o= (r—r)/(c— ).

Let ¢ be a given challenge. Zero-knowledge property is implied by the fact
that the the following two distributions, namely real protocol distribution and
simulated distribution, are identically distributed.

Real : {(a1,a2;¢;r1,m2) : Uy, us & Lg,a1 = g1 a2 = g5 95?11 = uy + ca,ro =
us + ¢f}

s o . $ . _ . ri,.—c _ry To. —cC
Sim: {(a1,ag;¢;7m1,72) 171,72 < Lgsa1 = g1 x” % a2 = g5' 957y}

Note that the probability of occurring for each distribution is the same and
equals 1/¢2.



Timed Secret Sharing 39

B.4 Security Game for PVSS

Definition 11 (Indistinguishably of Secrets [16]). A PVSS is said to be
secure if any polynomial time adversary A corrupting at most t parties has a
negligible probability in the following game played against a challenger.

1. Playing the role of a dealer, the challenger runs the Setup step of the PVTSS
and sends all the public information to A. Moreover, it creates the key-pairs
for the honest parties and send the corresponding public keys to A.
A creates and sends the public keys of the corrupted parties to the challenger.
3. The challenger randomly picks the values s and s’ in the space of the secret.
It then chooses b < {0,1} uniformly at random and runs the Sharing step of
the protocol with s as secret. It sends A all public information gemerated in
that phase together with sp.
4. A outputs a quess V.
The advantage of A is defined as |Pr[t’ =b] —1/2|.

N

B.5 Proof of Theorem [l

Proof (sketch). As our protocol follows closely the one in [16], we analyse the
security properties with respect the new techniques we apply.

Before Tb, the correctness is straightforward. Afterwards, the correctness may
fail with overwhelming probability due to the forgeability and indistinguishabil-
ity properties of the underlying SLPs together with the uniform distribution of
the secret s (and thus shares s;). In fact, anyone observing the public bulletin
board after Ty cannot distinguish an erroneous decryption share §; from a valid
one as both pass the verification check PVTSS.Verify,. The soundness of the
protocol follows from the underlying cut-and-choose argument and BDLEQ’s
soundness property. Note that by choosing parameters properly the soundness
error for the cut-and-choose technique can be negligible in n. The property of ¢-
privacy stems from the fact that given a random set of ¢ opened locked encrypted
shares produced by VTC.Sharing, the simulator Sim can produce a locked en-
crypted share indistinguishable from any locked encrypted share that remained
unopened due to the privacy properties of the underlying TLP. Security of the
protocol follows directly from the underlying PVSS protocol. Note that blinded
encrypted shares ¢; distributed by the dealer provide semantic security due to the
independent randomness f3;, while the original encryption method used in [16]
to generate §; is not IND-CPA-secure.

B.6 Proof of Theorem [5]

Proof (sketch). Correctness is straightforward. Verifiability is implied by the
underlying Ilytss protocol. Privacy follows from that of Ilytss together with
the underlying ITpTp protocol for additional time-locked shares. Moreover, the
commitments to shares v do not reveal any information about the secret s under
the DL assumption. Security is satisfied with respect to the gradual release of



40 A. Kavousi et al.

additional time-locked shares s} over time. That is, the adversary can forcibly
learn s} by (j + 1)T1, reducing fault tolerance to ¢ — j. The protocol is robust
as each party P, can eventually learn the secret by the time 75 due to the ¢
additional time-locked shares.

C A New Construction For VTSS

As an alternative to our VT'SS protocol presented in Figure [2] here we present a
rather similar construction using AVTC primitive. Thanks to a black box use of
AVTC primitive, each shareholder P; can check the validity of its locked share
C; with respect to the committed share v; to see if (s;,v;) € Rpr, holds, where
Rpy is a discrete logarithm relation. Moreover, the reconstructor can also verify
the validity of the submitted share s; by P; with the knowledge of v;. The new
protocols is presented in Figure [0]

The AVTC primitive proposed in [43] uses generic circuit-based MPC com-
putation to build the underlying proof system that can be implemented via
zk-SNARKSs [29]. So, it might not be a concretely efficient option for proving an
algebraic statement like a discrete logarithm as we have in VTSS construction.

Theorem 6. If the attributed verifiable timed commitments AVTC and Feld-
man’s verifiable secret sharing are secure, then our verifiable timed secret sharing
protocol ITyrss presented in Figure 3 satisfies soundness, privacy, and security,

w.r.t. definitions and respectively.

The proof is similar to Appendix [B:2] except using AVTC instead of VTC.

D Secret Sharing with Additional Shares

Construction. The dealer D performs the VTSS.Sharing to share a secret s
as specified in the description of the protocol ITytss. Moreover, it computes ¢
additional shares {s/,...,s;} by evaluating the same Shamir polynomial f(-)
containing the secret s at some known distinct points {ay,...,a;}. The dealer
then constructs and publishes an RSA-based TLP Z’ with time parameter T
by running TLP.Gen embedding the concatenation of the shares s{]|...]||s; as
its solution. The parties in P run VTSS.Recover and VTSS.Verify, as specified
in the description of the protocol Ilytss. In addition, any party P; willing to
obtain the additional shares starts solving the puzzle Z’ upon receiving it. So,
if less than a sufficient number of shares gets communicated by parties during
the reconstruction period [T3,T3], the shares locked in Z' would allow P; to
reconstruct the secret by the time T5.

Theorem 7. The above construction realizes the definition of VTSS from Sec-

tion [5.1



Timed Secret Sharing 41

1. Initialization:

— Setup: VTSS.Setup(1*, Ty, Ts) — pp, the dealer D runs AVTC.Setup(1*) and pub-

lishes the public parameters pp. Let g be a generator of a group G of order q.
2. Distribution:

— Sharing: VTSS.Sharing(pp, s) — {Ci, ™i}ic[n), the dealer D picks a secret s & Zq to
be shared among n parties. It samples a degree-t Shamir polynomial f(-) such that
f(0) = s and f(i) = s; for ¢ € [n]. It then commits to f by computing v; = ¢
and broadcasting v = {v;};c[n). Then, D runs AVTC.Commit(pp, 71, s:) to create a
locked share C; and a corresponding proof of validity m; with respect to v;, locking
the share s; to be opened forcibly at T} for all ¢ € [n]. Finally, the dealer D privately
sends each party P; its sharing {C;, 7 }.

— Share verification: VTSS.Verify, (pp, Ci, m:) — {0, 1}, each party P; first checks that
the locked share C; is well-formed and embeds the share s; using the proof 7;. Note
that the proof ensures that (s;,v;) € Rpr. It then verifies the consistency of the
shares by sampling a code word y* € C*, where y* = {y1,..., 9>}, and checking
T, 0% = 1.

— Complaint round: If a set of parties of size > t41 complain about sharing, the dealer
D is disqualified. Otherwise, the dealer reveals the corresponding locked shares with
proofs by broadcasting {Cj,m;}. If a proof does not verify (or the dealer does not
broadcast), the dealer is disqualified.

3. Reconstruction:

— Recovering: VTSS.Recover(pp, C;) — si, each party P; wishing to participate in
reconstruction runs AVTC.Solve(pp, C;) to obtain its share s; no sooner than T;.

— Recovery verification: VTSS.Verify,(pp, si, m:) — {0,1}, for each received share s;
from P;, the reconstructor checks its validity by computing g and comparing it
with Vj.

— Pooling: VTSS.Pool(pp,S,T2) — s, upon having sufficient number of valid shares
(i.e., > t+1) received before time T3, the reconstrctor (a party in P) reconstructs
the secret s using Lagrange interpolation at f(0) or aborts otherwise.

Fig. 6. VTSS protocol Ilvtss

Proof (sketch). assuming the additional time-locked shares are contained in a
secure TLP, the security properties follow directly from the underlying VTSS
scheme. For brevity, we omit a formal treatment but note the following nuance.
The reason why we limit the dealer to send(at most) ¢ shares is to allow only
those parties involved in the protocol to obtain the secret and not anyone in
public. Moreover, the fault tolerance of the system does not reduce, as the T5
is the upper time bound for the system and the adversary controlling at most ¢
shares does not learn any information about secret s before honest parties do.

Using packed secret sharing. In the packed Shamir secret sharing which is a
generalization of Shamir secret sharing, the dealer shares [ secrets (si,...,s;)
using one single (Shamir) polynomial f(-) of degree ¢t +1 — 1, where t is the fault
tolerance threshold. The resulting throughput by packing more secrets implies



42 A. Kavousi et al.

weakening the fault tolerance as ¢t + [ shares are now needed for reconstruction,
limiting the supported fault tolerance to n — (t + [). To achieve the standard
fault tolerance of ¢t in a time-based setting, the dealer can send [ additional
time-locked shares to make up for the availability of more honest shares in the
reconstruction phase. In this way, the scheme can resist up to n — ¢ malicious
parties while the honest parties can reconstruct the secret after obtaining the
additional shares by the time T5.



	3a293ddf-4023-4e4f-97fd-1cb9507d3859.pdf
	2023-1024.pdf
	Timed Secret Sharing


