

REPHRAIN Privacy Testbed

Partha Das Chowdhury. (partha.daschowdhury@bristol.ac.uk) Joe Gardiner (joe.gardiner@bristol.ac.uk)

Why a Privacy Testbed?

Hard Questions: What Data Does Facebook Collect When I'm Not Using Facebook, and Why?

Hard Questions is a series from Facebook that addresses the impact of our products on society.

By David Baser, Product Management Director

Why a Privacy Testbed?

Assurance about privacy properties – regulatory compliance, care for users, behaviour of third-party libraries/APIs

Checking claims about data and information storage and flows for compliance

Rigorous evaluation under experimental conditions; generating and sharing datasets.

Does it do what it says on the tin? (a.k.a privacy policy, DPIA or privacy labels).

Implementation

- Can deploy OS from disk image, or build as required
- Android applications emulated using Google's Android Virtual Device (AVD)
 - Deployed inside Ubuntu Desktop VM
- Virtualisation managed by kvm-compose tool

- CLI tool built by the team for Linux using RUST (and the libvirt library)
- Create custom test environments from configuration file using (up/down commands)

- Networking is provided using OpenvSwitch (OVS)
- OVS bridges can easily be linked up to an SDN controller (such as Floodlight), enabling more advanced network management.

High-level Design

Testbed App Orchestration Engine Orchestration Hypervisor Client App 1 Server App Client App N . . . Emulated **Emulated** Smartphone Smartphone **Guest OS** Deployment **Testbed Engine** SDN Virtual Network Controller Networking **Network Capture** Data Logging Analysis Analysis Analysis Framework Framework Framework Automated Analysis

kvm-compose

Challenges and Lessons

The level of abstraction, we model the protocols/applications

Not a case of plug n play. E2EE apps require a SIM Need for custom scripts to simulate user interaction in ADB.

Validate state transitions while configuring playbooks.

Testbed Implementation

bristol.ac.uk

Signal Desktop client on the Testbed (University of Bristol & University of Cambridge)

Pixel 3 with Android 10 Q (API 29)

Standard Signal Desktop

TLS-Interceptor

Plaintext Key

Victim Desktop Warning

bristol.ac.uk

TLS-Interceptor

	sourceUuld	isViewOnce	isErased	messageTimerExpiresAt	messageTimerStart	messageTimer	body	type	expirationStartTimestamp	expireTimer	hasVisualMediaAttachments	ments	
Filte	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter		
1111111 <i>NU</i>	11111111-1111-4111-8111-111111111111	0	0	NULL	NULL	NULL	NULL	story	NULL	NULL	0	0	
1111111 <i>NU</i>	11111111-1111-4111-8111-111111111111	0	0	NULL	NULL	NULL	NULL	story	NULL	NULL	0	0	
1111111 <i>NU</i>	11111111-1111-4111-8111-111111111111	0	0	NULL	NULL	NULL	NULL	story	NULL	NULL	0	0	
1111111 <i>NU</i>	11111111-1111-4111-8111-111111111111	0	0	NULL	NULL	NULL	NULL	story	NULL	NULL	0	0	
1111111 <i>NU</i>	11111111-1111-4111-8111-111111111111	0	0	NULL	NULL	NULL	NULL	story	NULL	NULL	0	0	
NU	NULL	0	0	NULL	NULL	NULL	Hello!	outgoing	1674037405226	NULL	0	0	
920	e54b8b4b-		0	NULL	NULL	NULL	Hi	incoming	NULL	NULL		0	

	active_at	type	members	name	profileName	profileFamily Name	profileFullName	e164	uuld	groupid	profileLastFetchedAt *1
	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter	Filter
ageCount":	1674037744693	private	NULL	NULL	Riders Pride	NULL	Riders Pride	+9198	e54b8b4b-	NULL	1674037744800
ageCount":	1674037405067	private	NULL	Partha Das Chowdhury	NULL	NULL	NULL	+4474	b661ee80-	NULL	1674037702332
ageCount":	NULL	private	NULL	NULL	Jgardiner	NULL	Jgardiner	+4479	0f5d0097-	NULL	1674037372334

()

Threat Models over Space and Time: A Case Study of E2EE Messaging Applications

Partha Das Chowdhury*, Maria Sameen*, Jenny Blessing[†], Nicholas Boucher[†], Joseph Gardiner*, Tom Burrows[†], Ross Anderson^{†‡}, Awais Rashid*

*University of Bristol, UK {partha.daschowdhury, maria.sameen, joe.gardiner, awais.rashid}@bristol.ac.uk

†University of Cambridge, UK. {jenny.blessing, nicholas.boucher, ross.anderson}@cl.cam.ac.uk, tom@tpmb.uk

†University of Edinburgh, UK ross.j.anderson@ed.ac.uk

http://arxiv.org/abs/2301.05653

Motivation

Evolution of Threat Models – Short lived (adversarial) access

Short Lived Adversarial Access

Applications	Emerging Threats (TM_{Δ})												
Applications	S	T	R	I	D	E	L	I	N	D	D	\boldsymbol{U}	N
Signal	√	-	✓	√	×	√	√	✓	√	-	√	-	-
Whatsapp	√	-	✓	√	×	×	√	✓	√	-	√	-	-
Element	×	-	×	√	×	×	√	×	×	-	√	-	-
Wickr Me	×	-	×	×	×	×	×	×	×	-	×	-	-
Viber	×	-	×	×	×	×	×	×	×	-	×	-	-
Telegram	√	-	✓	√	×	X	√	✓	√	-	√	-	-

(-) -> Not tested, (x) -> Attack not possible, (\checkmark) -> Attack possible

STRIDE:

- Spoofing
- Tampering
- Repudiation
- •Information disclosure
- Denial of service (DoS)
- •Elevation of privilege

LINDDUN:

- Linkability
- Identifiability
- Non-Repudiation
- Detectability
- Disclosure of Information
- Unawareness
- Non-compliance

Aligning Administrative boundary & Trust Boundary

- Administrative boundary Logical entities within which we function
- Trust boundary –The placement of security controls

- Trust boundary includes only the device.
- Requires frequent access control even for short lived access.

Aligning Administrative boundary & Trust Boundary

Anyone within the administrative boundary can clone desktop clients through short lived access.

The trust boundary includes legitimate insiders who can turn malicious

- Desktop clients cannot be cloned through short lived access.
- Trust boundary incudes only desktop clients fired by the primary device.

bristol ac uk

Security Engineering Lessons

- Reconciliation of security requirements across components with shared state
 - Desktop clients and primary devices share state.
 - Shared state is open to compromise in some desktop clients.
 - Model the threats of the shared components.
- Safe Defaults
 - Participants behavior change over time.
 - Threat modelling should accommodate this change in behavior and intentions.

Ongoing and Future Plans

Ongoing – Focus Groups with Wider Testbed Users

Future Implementation Priorities

- Scale up in terms of deployment of VMs
- Connecting with other test beds (e.g., IoT/LoraWAN at Edinburgh)
- Usability to the extent possible without oversimplifying the testbed.
- Integrate additional (external) analysis tools in the Testbed
- Enable the community to have a commodity privacy testbed.

To learn more about REPHRAIN, our future plans and how to get involved:

We would love to hear from you. Thank you!

E2EE Paper: http://arxiv.org/abs/2301.05653

bristol.ac.uk