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a b s t r a c t

Humans can identify objects following various spatial transformations such as scale and viewpoint.
This extends to novel objects, after a single presentation at a single pose, sometimes referred to as
online invariance. CNNs have been proposed as a compelling model of human vision, but their ability
to identify objects across transformations is typically tested on held-out samples of trained categories
after extensive data augmentation. This paper assesses whether standard CNNs can support human-like
online invariance by training models to recognize images of synthetic 3D objects that undergo several
transformations: rotation, scaling, translation, brightness, contrast, and viewpoint. Through the analysis
of models’ internal representations, we show that standard supervised CNNs trained on transformed
objects can acquire strong invariances on novel classes even when trained with as few as 50 objects
taken from 10 classes. This extended to a different dataset of photographs of real objects. We also show
that these invariances can be acquired in a self-supervised way, through solving the same/different
task. We suggest that this latter approach may be similar to how humans acquire invariances.
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1. Introduction

Humans can identify objects despite the variable images they
roject on our retina, including variation in image size, orien-
ation, illumination, and position (Tanaka, 1996). Critically, this
nvariance is computed ‘online’: a transformed, unfamiliar object
an often be recognized after a single presentation at a given pose.
or example, after identifying a novel object that is projected at
given retinal location we can immediately identify the object
cross a wide range of retinal locations (Blything et al., 2020,
021). How the visual system succeeds under these conditions
s still poorly understood, but we know that this task is solved
hrough hierarchical processing along the ventral stream that
nds at the inferotemporal cortex, where the activation of neural
opulations are largely independent to object transformation (Bar
Biederman, 1999).
Recently, Convolutional Neural Networks (CNNs) have been

roposed as a model for the human visual system (Khaligh-Razavi
Kriegeskorte, 2014; Schrimpf et al., 2018; Yamins & DiCarlo,

016). This is currently a topic of intense debate. On one hand,
NNs’ internal activations are predictive of brain recordings in
esponse to images taken from classic benchmark datasets in the
id and high levels of the ventral visual pathway (Cichy et al.,
016; Yamins et al., 2013, 2014). On the other hand, CNNs show
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some behavioral discrepancies that challenge their plausibility as
a model of the visual system: they are susceptible to adversarial
attacks (Dujmović et al., 2020; Szegedy et al., 2013); they are
highly susceptible to low amount of image degradation (Geirhos
et al., 2018); they often classify images based on textures instead
of shape (Geirhos et al., 2018) and local instead of global fea-
tures (Baker et al., 2018; Malhotra et al., 2021), do not account
for humans’ similarity judgments of 3D shapes (German & Jacobs,
2020), and do not exhibit human-like Gestalt properties (Biscione
& Bowers, 2022). Within the framework of this debate, we aim
to answer the question of whether CNNs can learn to support
online invariance for a wide variety of transformations commonly
experienced in the human visual environment. This would help us
better understand the limits and the possibilities of using CNNs
as a model of the human visual system.

When comparing CNNs to human vision, it is important to
distinguish between online transformation invariance and trained
transformation invariance (Fig. 1). Trained invariance refers to the
ability to classify novel exemplars of objects from trained classes
n trained locations (e.g., invariance to the pose of a specific image
f a dog after exposure to multiple poses of other exemplars
f dogs). This is the standard approach in training CNNs, and
ecause training is rarely performed through the lens of human
ognition, it often includes augmentations that are unlikely to
e experienced by humans (e.g. color jittering) as well as ex-
lude common ones (e.g. change in viewpoint). Accordingly, the
rained invariance commonly reported in CNNs is qualitatively
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Fig. 1. Illustration of trained and online invariance and our proposal for learning online invariances. In this figure, the transformation we depict is translation, but
the general logic applies to any transformations. Left: In trained invariance, after a model is trained on some classes of objects across different locations it can
recognize novel instances from those same classes across different locations. This property is commonly obtained in CNNs through extensive data augmentation.
Middle: In online invariance, a novel object can be instantly recognized across several transformations, after have experienced it at one location. Neural networks
fail to show this property (see Section 1.1). Right: In our approach, a model is trained on one dataset of transformed objects in order to acquire online invariance
to novel classes.
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different from human online invariance that extends to novel
objects from unseen classes following exposure to only one or a
few poses (Bowers et al., 2016). The degree to which CNNs are
invariant to online transformation is unclear.

In this work we aim to close this gap by testing, with a variety
of methods, whether CNNs support online invariance for novel
objects from novel classes even when the novel classes come
from a new dataset. We only trained and tested models using
naturalistic transformations, namely, scale, rotation, translation,
brightness, contrast and change in viewpoint. Particular attention
is given to the latter as it is not a simple transformation of a
2D image and thus is not typically used when performing data
augmentation. We show that common CNNs models can acquire,
to a strong degree, all the above invariances, even when trained
with as few as 50 images of objects taken from 10 categories.
Critically, these models not only support invariance for trained
object classes, but also for untrained object classes. We find
this following supervised learning, and also in a self-supervised
manner by classifying pairs of objects as the same or different. We
argue that this latter approach is more psychologically plausible,
and discuss the implication in terms of human psychology in
Section 4.2.

1.1. Related work

The distinction between trained and online invariance has
been the focus of recent work on translation invariance (recog-
nizing an object at novel retinal locations after having seen it
at one location). Behavioral studies have highlighted the extent
to which humans possess online translation invariance (Blything
et al., 2020, 2021), and it is often claimed that convolutional
and pooling operations endow CNNs a similar degree of online
invariance to translation (LeCun & Bengio, 1995; Marcus, 2018).
However, several experiments have shown that this is not the
case, and indeed, CNNs not only fail to support online invari-
ance to translation, but also fail to support online invariance
to scale, rotation, and flipping along the vertical and horizon-
tal axis (Blything et al., 2021; Chen et al., 2017; Gong et al.,
2014; Kauderer-Abrams, 2017). One approach to achieving on-
line invariance in CNNs is through architectural modification: for
example, adding a Global Average Pooling layer to the end of
the convolutional block results in complete translation invari-
ance (Blything et al., 2021). Additional architectural modifications
have been introduced in order to support other types of transfor-
mation. This has resulted in a proliferation of modified models
that accounted for either individual transformations (e.g. Han
et al., 2020; Xu et al., 2014 for scale; Kim et al., 2020; Marcos
et al., 2016 for rotation) or multiple transformations at the same
time (Cohen & Welling, 2016). Although these models may prove
valuable in terms of technological advancements in the field of
object recognition, the architectural modifications are not guided
by any concern of biologically plausibility. And more importantly,
a key assumption of these approaches is that standard CNNs
architectures are incapable of supporting online invariances. If
223
it turns out that some training regimes allow standard CNNs
to support online invariances, the introduction of additional ar-
chitectural (innate) mechanisms may not be required either for
engineering or psychological considerations.

Biscione and Bowers (2020) and Blything et al. (2021) first
reported examples of a classic CNN model (VGG16), without
any architectural changes, exhibiting complete online invari-
ance to translation when the model was pretrained on the Im-
ageNet dataset. That is, a network pretrained on ImageNet sup-
ported translation invariance to other, very different datasets
(e.g. MNIST, EMNIST, and others). A key feature of the pretraining
was that it consisted of resizing and crop augmentations, which
indirectly resulted in translated versions of the same images. That
is, these findings lend support the hypothesis online invariance
can be trained by using a dataset of translated samples. Biscione
and Bowers (2021) further investigated this approach by pretrain-
ing several convolutional architectures on a variety of datasets
that differed in the complexity of the translated stimuli. They
observed that training on simple translated datasets was often
enough to support online translation invariance on other, novel
classes, sometimes very different from the trained ones.

Overall, a review of the literature points to the following
facts: CNNs are not, by design, architecturally invariant to any
tested transformation (scale, rotation, translation). Many ad hoc
rchitectural changes can be employed to provide invariance
or some transformations. Only recently it has been found that
retraining standard CNNs (without any architectural modifica-
ion) with translated objects endows them with online translation
nvariance (that is, translation invariance for classes different than
he pretrained ones). However, it has not yet been explored to
hat extend this technique can be employed across transfor-
ations other than translations and across different networks
rchitectures. The main goal of the present work is to fill this gap
y testing a large set of transformations (in fact, a set covering
ll possible transformations in 3D space) on many networks, both
upervised and a self-supervised.

.2. Outline of the current work

In this work, we extend the work of Blything et al. (2021)
nd Biscione and Bowers (2020, 2021), and show that: (1) online
nvariance to many different types of transformations can be
cquired with no architectural change by pretraining the network
n the same transformations assessed at test; (2) many differ-
nt supervised networks acquire this property, as does a self-
upervised network that solves the same/different task. We argue
hat the latter task provides a more psychologically plausible
pproach to learning invariances in infants.
We tested 7 supervised networks (AlexNet, VGG11, VGG19,

esnet-18, Resnet-50, GoogLeNet, Densenet-201) and one self-
upervised network (detailed in Section 2.3) on 6 invariances:
ranslation, rotation, scale, brightness, contrast, and viewpoint.
lthough this final transformation does not belong to standard
ata augmentation technique (in that it is not a transformation
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f a 2D image), it is a psychologically relevant transformation,
ormally experienced by an observer in a 3D world. In order to
btain different viewpoints samples, we generated a new dataset
ased on ShapeNet (Section 2.2).
Our general approach consisted in training each network on

0 classes from the ShapeNet dataset, for each transformation
eparately, and without any transformation. We then tested on
0 novel classes either from ShapeNet or from a dataset of pho-
ographed objects, ETH-80 (Leibe & Schiele, 2003). A network
rained with a certain transformation was tested on the cor-
esponding transformation (e.g. a network trained with trans-
ated ShapeNet objects was tested on translated objects from
ovel classes). The networks trained without any transformation
ere tested across all transformations. With the self-supervised
etwork, network performance on novel classes can be tested
irectly without having to retrain the model (Section 3.1). For the
upervised networks, assessing the amount of online invariance
n novel classes through the classification performance requires
etraining on the novel classes. This in turn could result in catas-
rophically forgetting the acquired invariances (Biscione & Bow-
rs, 2021 as discussed in more detail in Section 3.2). Therefore we
ssessed the amount of online invariance with two approaches
hat did not require retraining: a 5-alternative forced choice task,
n which the internal representation was used to identify which
ransformed object, among five candidates, was the same as the
arget object (Section 3.2.1); a direct measure of the internal rep-
esentation similarity between transformed and un-transformed
amples (Section 3.2.3). These tests were always performed on
ovel classes. In Section 3.2.2, we also ran a cross-transformation
nalysis, in which we tested whether pretraining on one trans-
ormation afforded invariance to any other transformation. In
ection 3.3 we investigated how the number of trained objects
mpacted the acquisition of invariances to transformations on
ovel classes of objects. A summary of the result is provided in
ection 3.4. Finally, the limitation of the current method and the
mplications of our findings for Machine Learning and Psychology
re discussed in Section 4.

. Methodological overview

.1. Transformation scheme

We explore whether each model can learn each of the 6 in-
ariances by applying a corresponding stochastic transformation
cheme Tt,θ to each object, where t identifies a transformation
ith parameters θ (e.g. t = rotation and θ = [−180, 180] indi-
ates a random rotation on the image plane between −180◦ and
80◦. When t ̸= viewpoint , the object is presented at an inclina-
ion of 80◦ and azimuth of 36◦. The parameters θ for each trans-
ormation t = {rotation, scale, translation, brightness, contrast,
iewpoint} are shown in Fig. 2B.

.2. Multi-viewpoint dataset

In order to investigate whether invariance to viewpoint can
e acquired we generated a novel 2D dataset based on ShapeNet
Chang et al., 2015), a dataset containing 50300 3D objects across
5 categories. Each 3D object was rendered textureless on a
niform black background as a 128 × 128 × 3 image. To ob-
ain variation in viewpoint, we placed a camera on a sphere
t an inclination ranging from 30◦ to 110◦ (10◦ intervals) and
n azimuth covering the whole sphere (36◦ intervals, Fig. 2C),
enerating 90 different viewpoints per object. In the following
ections the term ‘‘object’’ refers to any image of a specific 3D
odel regardless of viewpoint or 2D transformations applied to

t. Notice that this approach differs greatly from other approaches
n which ShapeNet’s 3D objects are used in networks that directly
onsume point clouds (e.g. PointNet, Qi et al., 2016).
224
.3. Same/Different task approach

Consider a set of objects O = {on}Nn=1 subjected to a transfor-
ation scheme Tt,θ (on) which stochastically produces an image

i
n. We define Xn = {xin}

M
i=1 as a set of images resulting from

pplying M times the transformation scheme Tt,θ to the object
n. We furthermore define an embedding module gψ (·) which
roduces a compact representation z in of an input image xin. Pairs
f inputs {xin, x

j
m} are build such that either they are from the

ame set Xn and thus n = m (they represent same object on) with
robability p or they are from two different sets so that n ̸= m

(they represent different objects) with probability 1− p. The pair
embeddings {z in, z

j
m} are aggregated through a(·, ·) and fed into

hφ(·), as a non-linear function approximator parameterized by a
earnable weights φ which returns a dissimilarity score ŷ. We use
mean square error (MSE) for the loss, matching the dissimilarity
score with object identity (Sung et al., 2018):

L(ŷn,m) =

N∑
(ŷn,m − 1{n ̸= m})2

This is minimum when the ŷ = 1 for different objects and
ˆ = 0 for the same objects (see Fig. 3).

In particular, the embedding module gθ is a copy of VGG11
in which the last fully connected layer (the classifier) is replaced
by another fully connected layer which output is an embedding
of 512 units + Sigmoid activation function. As an aggregation
function we use a(z in, z

j
m) = |z in − z jm|. The dissimilarity module

hφ is a single fully connected layer with a single output unit +

Sigmoid. The probability p of a pair being composed of the same
objects was set at 0.5.

Our approach is related to self-supervised learning, in which
a system is trained with unlabeled data on a surrogate task to
acquire features that can be used on a downstream task (Jing
& Tian, 2019). For example, SimCLR, (Chen et al., 2020), and
Relational Reasoning Network (Patacchiola & Storkey, 2020) use
mini-batches of augmented samples and map together repre-
sentations of different augmentations of the same image and
separate the representations different samples. One of the main
differences between our self-supervised approach on one hand,
and SimCLR and Relational Reasoning Network on the other, is
that we use a 3D model instead of a 2D image to generate data
augmentations, and thus we can consider augmentations that are
normally excluded from other models, that is viewpoint. This
could be expanded to changes in lightning, textures, and other
material/environmental properties of the 3D object, allowing us
to train models on much more naturalistic data. However, our aim
is not to compare our implementation with similar contrastive
approaches or to obtain a state-of-the-art accuracy, but to show
as a proof of concept that a simple self-supervised network can
indeed acquire these invariances.

2.4. Supervised approach

Supervised training was arranged as usual: considered a set of
categories C = {ck}Kk=1 each containing a number of objects Ok =

{on,k}Nn=1 subjected to a transformation scheme Tt,θ (on,k) which
stochastically produces an image xik,n. In a supervised approach,
the identity of an object n is discarded and only the class k is con-
sidered during training. A non-linear function approximator fφ(xik)
parameterized by learnable weights φ is trained to minimize the
error in predicting the output class k. For fφ we consider a va-
riety of Convolutional Neural Network: Alexnet, VGG11, VGG19,
Resnet-18, Resnet-50, GoogLeNet, Densenet-201, covering a wide
range of feedforward architectures. Each network was trained

through stochastic gradient descent on the cross-entropy loss.
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Fig. 2. A: Some samples from the ShapeNet and ETH-80 datasets (from one viewpoint and without any 2D transformations). B: Example of different samples resulting
rom stochastically applying a transformation to the 3D object, and the parameters used for each transformation. C: Representation of the method used for generating
ifferent objects’ viewpoints. The cameras (dots) were placed at different locations around a sphere. Each camera pointed at the center of the sphere, where the 3D
bject was placed (central dot). The cameras were only placed between an inclination of 30◦ to 110◦ , and covered the whole sphere longitudinally (shaded area).
Fig. 3. Overview of the proposed Same/Different Network. See text for details.
. Experiments and results

We assessed trained and online invariance in six different
upervised networks and in the self-supervised same/different
etwork. We trained all networks on the same samples obtained
rom the ShapeNet objects dataset: we randomly sampled 250
D objects from 10 classes, totaling 2500 objects. The classes
ere randomly selected to be: bench, bottle, bus, clock, faucet,

ar, knife, laptop, rifle, table. Each model was trained on two
onditions: (1) with each transformation (e.g., translation, rota-
ion, etc.) applied separately, and (2) without transformations.
his results in models in this latter condition being trained on
ess samples (as the objects used in this condition were not
ransformed) but this does not affect the results, as the analysis
n Section 3.3 shows. We used Adam optimizer with learning rate
0−3, batch size of 64. We trained until convergence, stopping
hen the exponential moving average of the loss (with α = 0.1)
omputed on the training set did not decrease by at least 0.01
or 250 mini-batch iterations. We normalized the input images
etween −1 and 1 by pre-computing the mean and standard

deviation for a large subset of the ShapeNet/ETH-80 datasets.
Each experiment is repeated over 3 random seeds.

To measure the degree of online invariance we selected 3D
odels from 10 novel classes from ShapeNet: airplane, bathtub,
ar, mobile-phone, chair, guitar, lamp, pot, sofa, vessel. We also
ested online invariance on a new dataset, ETH-80, which includes
hotographs of 80 real life objects along 8 classes (apple, car, cow,
up, dog, horse, pear, tomato), each object photographed from 41
iewpoints, which made it ideal for our viewpoints tests (Fig. 2).
he background was removed from these images, and they were
onverted to grayscale values. We excluded the class ‘‘tomato’’,
s it was almost indistinguishable from the class ‘‘apple’’ when

onverted to grayscale.

225
3.1. Invariance in the Same/Different network

In the case of the Same/Different Network, invariance is man-
ifest when the model outputs a low dissimilarity score to trans-
formations of the same object and a high score to different
objects, and online invariance can be directly measured by pre-
senting novel classes. Each version of the same/different network
was tested on the same transformation it was trained on (apart
for the networks trained without any transformations, which
were tested on each transformation separately). With both novel
ShapeNet classes and ETH objects, the performances of the net-
works trained on transformations was consistently better than
the network trained on untransformed objects, with performance
> 90% in all conditions other than viewpoint (Table 1). Testing on
the ETH dataset resulted in a drop in accuracy of around 4% for
all but the viewpoint transformation, which dropped by ∼ 16%.
This is still noteworthy considering the difference in appearance
between the trained ShapeNet objects and these ETH objects and
the low variability within ETH classes (e.g. when a pair is made
of two different objects from the same class, such as two mugs,
the low inter-class variability makes it more difficult to classify
the objects as different). Overall, the network shows strong online
invariance for novel classes and novel datasets.

3.2. Invariance across all models

Assessing online invariance on supervised networks presents
special challenges. One approach consists of retraining the net-
works on un-transformed samples from novel classes, and then
measuring the classification performance on the transformed ver-
sion of the same classes. For example, to assess translation invari-
ance, a network could be trained on samples from novel classes,
always presented at the center of the canvas, and then tested on

the same classes presented at different locations. The resulting
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Table 1
Accuracy for the Same/Different Network on novel ShapeNet classes and ETH-80 classes.

Transformations on test

Viewpoint Translation Rotation Scale Brightness Contrast

ShapeNet → ShapeNet Trained with transformations 82.65 ± 0.75 95.02 ± 0.88 96.61 ± 0.49 95.06 ± 0.35 98.54 ± 0.36 97.85 ± 0.39
Trained without transformations 50.85 ± 0.59 50.56 ± 1.35 50.58 ± 1.41 50.68 ± 1.37 50.01 ± 1.19 52.17 ± 1.19

ShapeNet → ETH-80 Trained with transformations 66.67 ± 3.56 93.33 ± 1.78 92.85 ± 3.08 92.85 ± 4.04 94.76 ± 3.56 93.33 ± 3.56
Trained without transformations 53.81 ± 2.43 51.42 ± 5.83 51.90 ± 5.87 53.33 ± 5.51 54.76 ± 4.71 54.28 ± 4.04
U

m
t
A

I

classification accuracy would correspond to the degree of online
invariance to translation. The problem with this approach is that
it requires retraining on novel classes, which might result in the
catastrophic forgetting of the acquired invariances (French, 1999).
This means that even if the networks did acquire the invariance
from the transformed dataset, we would not be able to observe it
through the classification performance alone (Biscione & Bowers,
2021). This point will be further discussed in Section 4.1.

Following Biscione and Bowers (2021) we opted to assess
nline invariance by measuring the similarity of internal rep-
esentation between transformed and untransformed versions
f the same objects in both the same/different and supervised
etworks using cosine similarity:

l(a, b) =
dl(a) · dl(b)dl(a) dl(b) ,

here dl(a) is the activation at layer l given input vector a. We
hen assessed invariance in two ways, namely, in a choice task
n which similarity scores were used to classify objects, and a
ormalized cosine similarity score that accounted for within vs.
etween objects cosine similarity scores. We consider these two
easures in turn.

.2.1. 5-Alternative forced choice task
We tested each network on 5-alternative choice task (5AFC).

he cosine similarity between a target object and 5 candidates
as computed, setting one candidate to be the same as the target
Fig. 4, top). All objects were subjected to random transformation,
nd each network was tested on the same transformation it was
rained on. Objects were randomly sampled from the unseen
lasses. We ran 100 trials for each condition, and defined as
‘correct’’ a response trial in which the cosine similarity at the last
ayer was higher for the transformed version of the target object.
or the Same/Different task, the cosine similarity was computed
n the embedding vector. The results are shown in Fig. 4, bottom-
eft, together with the results of the same test applied on a
etwork trained on un-transformed samples (black circles in the
lot). The results indicate high performance in all transformation
onditions, with viewpoint being the most challenging. That is,
ll models acquired an impressive degree of online invariance.
he 5AFC test repeated on the ETH objects resulted in a slight
rop in accuracy (by ∼ 6%), with the viewpoint transformation
uffered the most extreme drop in accuracy (lowered to ∼ 60%,
nd thus still remarkably higher than chance) compared to the
hapeNet objects. Therefore, even with this new dataset, accuracy
as always significantly higher with network trained on trans-

ormed samples than pretrained on un-transformed samples (see
ppendix A).

.2.2. Cross-transformation tests
One possible interpretation of these findings is that the online

nvariance for a given transformation type emerges in response to
raining on the corresponding transformation, and another is that
raining on any invariance will improve all forms of online in-
ariance. To test this, we performed cross-transformations tests:
network trained with a transformation t was subjected to a
226
choice-test with a different transformation applied. For the view-
point, translation, rotation, and scale, the obtained performance
is similar to the performance of an un-transformed network
(Fig. 4, bottom-right panel). On the other hand, brightness and
contrast generalized to each other, and only to each other: for
example, training translation did not increase invariance on either
brightness or contrast.

3.2.3. Internal representations analysis
As a further metric of transformation invariance, we directly

explored how the internal representations of an object changed
when transformed compared to a base view. Consider τ θt (on) as a
specific transformation t with parameter θ of object on, (e.g. ro-
tation of the object on by 60◦). Let us define a set of baseline
parameters α for each transformation t: 1 for scale, brightness,
and contrast; 0◦ for rotation, (64, 64) pixels for translation (center
of the canvas), inclination = 80◦ and azimuth = 36◦ for the
viewpoint transformation. Therefore, for each network trained
on a transformation Tt,θ , and a set of randomly sampled objects
{o1, . . . , oR} from novel classes, we defined It (θ ) (for Invariance)
as the average similarity of representations between the objects
base-view and their transformations τ θt . A network could obtain
a high Invariance score by simply collapsing all representations
together, regardless of variability across objects or class identity.
The model could be trivially invariant to object transformation
by being invariant to any object feature. We accounted for this
possibility by measuring the variability across different objects:
we define Ut (θ ) (for Uniformity) as the between-objects invari-
ance, that is the total average similarity across different randomly
sampled objects u = {u1, . . . , un} and v = {v1, . . . , vn}:

It (θ ) =
1
R

R∑
r

C l(τ αt (or ), τ
θ
t (or )) and

t (θ ) =
1
N

N∑
n

C l(τ αt (un), τ θt (vn)).

We used Ut (θ ) as a baseline invariance across objects: if a
odel has learnt to be non-trivially invariant to transformation
, It (θ ) should be higher than Ut (θ ). Therefore we defined the
djusted Invariance Metric as

˜t (θ ) =
It (θ ) − Ut (θ )
1 − Ut (θ )

,

which returns the adjusted invariance for each transformation
by parameter θ . A value of 1 indicates identical representation
between transformed version of the same objects (same inter-
nal representation across transformed versions of the same ob-
jects, and different internal representations of different objects);
a value of 0 indicates that two different transformations are as
different as two different objects.

All objects used in this analysis belong to novel, untrained
classes from ShapeNet. The results (Fig. 5) clearly show that,
when trained and tested on corresponding transformations, each
model can acquire a strong invariance to that transformation,
even for novel objects and classes. This is not the case with
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Fig. 4. Top: Illustration of the 5-alternative forced choice task. One object is compared with 5 alternatives in which one of them is the same object (in the picture,
Candidate B). All samples are subjected to a transformation (that varied by condition). We used the cosine similarity of the internal representations across pairs of
Target and Candidates as a metric of choice. Bottom-left: Results in terms of accuracy for each transformation and each model. The bar represents the accuracy
or a network trained on the same transformation it is been tested on. Compare this with the black circle inside each bar which represents the accuracy for a
etwork trained on un-transformed objects. Bottom-right: accuracy when a network trained on one transformation is tested on a different transformation. Apart
rom brightness and contrast, training on one transformation did not generalize to other transformations. Overall, these plots show a high degree of learnt online
nvariance to a transformation when the network is trained on the same transformation (the classes used for the 5AFC were not used during training).
Fig. 5. Invariance Representation Metric between a base view of an object and its transformed versions. The networks trained with transformations (continuous
lines) have a high invariance across most levels of each transformation, whereas for networks trained on un-transformed objects (dashed lines) the similarity sharply
decreases even at low levels of transformations. The results in the four panels on the left are averaged across 200 random samples from untrained classes. The
haded area represents the standard deviation across the 3 seeds for each network. The black line with circular markers represents the cosine similarity at the
ixel level at different transformations. The right panels show the results of viewpoint and translation invariance for two networks (other networks are shown in
ppendix B). The results were consistent across all tested networks.
etworks not trained on transformed samples, as their represen-
ations strongly depend on the object pose. There does not seem
o be any relevant difference amongst models, either supervised
r self-supervised. The analysis of Ut (θ ) (in Appendix B.1) also

shows that the networks not trained on transformed samples col-
lapse representations of different, transformed objects together.
For these models, a car rotated 90◦ is very similar to a horse
otated 5◦ (however, un-transformed objects were still clearly
separated from different, un-transformed objects).

3.3. Influence of number of objects trained

In the preceding experiments, each network reached a high
evel of invariance following training on 250 objects per class. We
227
explored how invariance changed as a function of the number
of trained objects. For each network, we repeated the previous
training with N = {5, 50, 100, 500} where N is the number of
objects per each category, and computed the results on the 5AFC
task. Surprisingly, there does not seem to be any effect on the
number of trained objects with the transformed networks (Fig. 6):
as few as 5 objects per classes (with a total of 50 transformed
objects trained on) were enough to acquire strong invariances.
The plot also shows that the invariance acquired was not due
to the higher number of samples experienced by the network
trained with transformations: increasing the number of objects
(and thus the number of different samples) did not improve on-
line invariance on networks trained on un-transformed samples.
In fact, it appeared to decrease it in some cases.
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Fig. 6. Effect of training on different number of objects on the learnt invariance. There is no effect on the network trained on transformed objects. However, there
seems to be some effect on network trained on un-transformed objects, but the direction of this effect is not consistent across transformations.
3.4. Summary of the results

CNNs architectures can learn to support online invariance
or scale, rotation, translation, brightness, contrast, and, to a
ower amount, viewpoint, when trained on an appropriately
ransformed dataset. The findings are robust across a variety of
rchitectures, learning setups (supervised and self-supervised),
nd training size (trained on as few as 50 objects taken from 10
lasses).
In the 5 alternative forces choice task (Section 3.2.1) all net-

orks performed at ∼ 90% accuracy for all transformations but
viewpoint (∼ 70% across all networks), when tested on novel
classes from ShapeNet. When tested on a novel dataset (ETH-80),
accuracy dropped only slightly for all conditions but viewpoint
invariance, which dropped to ∼ 60%, still remarkably higher
than chance. Overall, viewpoint invariance appeared to be the
most difficult transformation to generalize across novel classes.
Similar results are obtained by analyzing the networks’ internal
representations (Section 3.2.3). We also verified that, in order
to acquire invariance to a certain transformation, the networks
needed to be trained specifically on that transformation, and
that training on other transformations will not suffice (with the
exception of contrast and brightness, which would generalize
to each other, Section 3.2.2). Similar results are obtained when
varying the number of trained objects, and networks were able to
acquire all invariances following training on as few as 50 objects
taken from 10 classes (Section 3.3).

Overall, we found that training a network on a transformation
on one set of objects allowed CNNs to support the corresponding
transformation for novel objects taken from novel classes. For
example, we showed that training rotation invariance on images
of synthetic 3D buses supports rotation invariance on images of
synthetic 3D chairs. We show that this extends to novel classes
from the same synthetic dataset and on a different dataset of real,
photographed objects (ETH-80).

4. Discussion

The finding that a range of visual invariances can be acquired
using a general learning mechanism is significant both for the
machine learning community and for the psychological literature.
We discuss both points in turn.

4.1. Significance for machine learning

As outlined in Section 1.1, the common approach to achieve
strong invariance to various transformations is to apply archi-
tectural modifications to standard CNNs. Some of these modi-

fications afford invariance to only one transformation (e.g. Han
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et al., 2020; Xu et al., 2014 for scale; Kim et al., 2020; Marcos
et al., 2016 for rotation), others to multiple transformations (Co-
hen & Welling, 2016). Our work shows that these modifications
may not be necessary to acquire invariances. Indeed, we found
through measuring internal representation that standard CNNs
show strong invariances to a range of transformations following
the appropriate training. Furthermore, the current approach al-
lows the possibility of acquiring invariances that are not limited
to 2D affine transformation (as in the architectural approach)
but can be extended to all types of variations: we have shown
here viewpoint variation, but it is possible to design a dataset
to induce invariance to background, clutter, texture, etc. It is not
clear how to modify a network’s architecture to innately capture
these invariances.

However, it is important to emphasize that these learnt latent
invariances will not always manifest themselves in performance.
For example, imagine that we want to perform classification on
some classes, e.g. different breeds of dogs, and for computational
reasons we only want to train with the dogs at one location and
wish the network to be able to classify the dog at any location
(that is, we want the network to possess online invariance to
translation). With our approach, we would need to pretrain the
network on a translated dataset, and then retrain the network
on our dataset of dogs. The problem of this approach is that the
re-training session could result in catastrophic forgetting (French,
1999; McCloskey & Cohen, 1989), a phenomenon in which ac-
quired capability rapidly degrade as the system learns a new
task. In our cases, it means that even though CNNs can acquire
online invariances, and these can be generalized on object from
novel classes (as we have shown through internal representation
analysis), retraining to perform classification could result in losing
the learnt invariance.

Still, there are reasons to think this limitation can be over-
come. Biscione and Bowers (2021), in the context of translation
invariance, found that learnt invariances have higher chance to
be retained if the re-training dataset is less complex than the
pretraining one. Furthermore, there is ongoing work in overcom-
ing catastrophic interference through interleaved training (Schaul
et al., 2015), selective plasticity (Beaulieu et al., 2020; Fernando
et al., 2017; Rusu et al., 2016), and by incentivizing sparse or dis-
joint representations (French, 1999; Liu et al., 2018). Even though
the current applicability of this approach as-is in classification
is limited, we suggest that promising advances in the field of
catastrophic forgetting could provide a possible path for making
use of the learnt invariances and thus complement or replace
the current architectural approach. Our work highlights how the
solution to catastrophic interference may have implications for
how CNNs can solve various online invariances.
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We also note that the current results appear to be inconsistent
with two recent findings. Hernandez-Garcia and Konig (2019)
found low similarities of the latent embeddings of transformed
objects for a network trained on augmented CIFAR10 (with ran-
dom affine transformations, brightness and contrast). We believe
that this is due to their reliance of Euclidean distance which
underestimated the degree of scale invariance and subsequently
(since the transformations were aggregated) the strength of all
invariances. Also Xu and Vaziri-Pashkam (2021) found inconsis-
tent embeddings across classes of translated objects, which we
believe to be due to the different training setup they employed.
We expand on this in Appendix C.

4.2. Significance for human psychology

An important observation regarding invariances in humans is
that they exist from an early age: rotation (Schwartz et al., 1979)
and scale (Day & McKenzie, 1981) invariance was found in infants
at 3–4 months; viewpoint invariance seems to be present in
infants as young as 3 months old (Bornstein et al., 1986; Kraebel
& Gerhardstein, 2006).

How these invariances are acquired, however, is not clear.
Our work raises two points. Firstly, the proliferation of archi-
tectural modifications to obtain online invariances in CNNs (see
Section 1.1), even though developed without any psychological
considerations, suggests that ‘‘innate’’ mechanisms for invari-
ances are needed in this context, which further suggests that a
form of innate architecture is needed in human vision. In fact,
we show that special purpose architectures are unnecessary, and
learning invariances to object transformation can be achieved
by a generic mechanism that performs feature learning on 2D
samples. This may also apply to humans.

Secondly, our results with the same/different network raise
the possibility that the learning mechanism responsible for ac-
quiring these invariances could be based on the evaluation of the
‘‘sameness’’ of objects following changes in their retinal projec-
tions due to transformation. This is consistent with the analogical
reasoning research literature that suggests the ability to form
abstract relationship amongst objects is linked to the ability to
solve the same/different tasks (Gentner et al., 2021; Premack,
1983). This skill is acquired during the first months, fully devel-
oped in 7-months old infants, and strongly linked to higher form
of abstractions (Hespos et al., 2021). Importantly, this approach
does not require the complex process of object categorization
through supervised learning that does not apply at these early
ages. However, as shown by Puebla and Bowers (2021), mod-
elling the same/different task with CNNs will require a deeper
understanding of the conditions under which this ability can be
extended to unseen visual environments.

Of course, the same/different task still requires the informa-
tion of whether the two objects are in fact the same or not, and
this might be provided by a variety of mechanisms that exploit
the temporal continuity of a sequence of retinal projections from
objects in the world following spontaneous movements (e.g. eyes
or head movement) and, later in the developmental stage, the
active manipulation of objects while viewing them. It is impor-
tant to acknowledge that our training regime sidesteps some
important issues, notably, the specific mechanisms for telling the
network that two images are the same or different. Nevertheless,
our findings show that the same/different signal is sufficient for
CNNs to support online invariance to transformations, and this
should motivate more research into how the infant brain might
extract this signal in order to learn online invariances to various
transformations.

Using CNNs as a models for the human brain is an ambitious
project. Thus far, the claim that CNNs provide a promising model
229
of human vision has largely been supported by statistical mea-
sures of similarity between unit activations in models and neural
populations in visual cortex (Zhuang et al., 2020). We believe
that, for CNNs to be useful models of the visual stream, they also
need to possess a set of fundamental functional properties that
characterize human vision. Our high level contribution is to show
that one of these properties, invariance to object transformations,
that is not present in the system by default, can be acquired, even
in a self-supervised manner.

5. Conclusion

Overall, the results presented in this work suggest that it is
possible to acquire a wide set of online invariances by pretraining
on an appropriate dataset, with as few as 50 objects. Invariance
was acquired for scale, rotation, translation, brightness, contrast,
and, to lower amount, viewpoint. Critically, online invariance
was obtained both with supervised and self-supervised training.
Even though these invariances observed in the latent space will
not always manifest themselves in classification performance at
present due to catastrophic interference, recent progress in ad-
dressing catastrophic interference in other contexts may eventu-
ally overcome these difficulties. From a psychological viewpoint,
our findings suggest that online invariances may by the product
of learning rather than an innate endowment. From a machine
learning perspectives, our findings highlight how recent architec-
tural modifications of CNNs to support these invariances may be
unnecessary. Rather, the focus should be on training models on
the relevant datasets.
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Appendix A. 5AFT for ETH-80

We present here the result of the 5-alternative forced choice
task (5AFC) run on the ETH-80 dataset. The details of the test
were identical for the ShapeNet test. The results, Fig. A.7, top
show an overall drop in accuracy averaged across networks of
6.5±7.8%. The variability in generalization across datasets varied
between the different transformations and networks, but we
could not find any pattern. Notice that even with the sharpest
drop (with viewpoint transformation), the accuracy remained
far above chance (which with 5AFT is 20%). We directly show
the difference in 5AFC accuracy between the ETH-80 and the
ShapeNet results in Fig. A.7, bottom. The most striking results
may be the drop in accuracy in the contrast transformation for the
Same/Different Network. At the same time, the Same/Different
network seems to generalize consistently well (across the 3
seeds) on new viewpoints.

Appendix B. Invariant representations analysis

We provide here the full results of the invariant representation
analysis with the Adjusted Invariance Metric Ĩ (θ ) for the transla-
t
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Fig. A.7. Top: Results for the 5AFT task applied on the ETH-80, a novel dataset of photographed objects. The results are slightly worse than the tests on novel
ShapeNet classes (Fig. 4), which is expected given the different appearance of the samples, but the models are still showing a high degree of invariance. Bottom:
We plot the differential accuracy between the 5AFT on the ETH-80 dataset and on the ShapeNet dataset. The difference is computed across pairs of seeds.

Fig. B.8. The value of the Adjusted Invariance Metric for the Translation and Viewpoint transformation conditions, for all networks. Transformation of objects across
novel classes are compared to a base view (the × in the plot), and the invariance representation across those poses is computed. For each network, we show on
the left the result for the network trained on un-transformed objects, and on the right results for the network trained on transformed objects (either translation
or viewpoints).
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Fig. B.9. Invariance It (θ ), Uniformity Ut (θ ) and Adjusted Invariance Metric Ĩt (θ ) for a vanilla (untrained) VGG11. This is a clear case where the network shows
invariance to transformation by trivially collapsing all representations together, regardless of them belonging to the same or different objects. The metric Ĩt (θ )
correctly adjusts the values to show that the network does not possess human-like invariance.
tion and viewpoint transformations (which were presented only
for two networks in the main text in Fig. 5) in Fig. B.8. The
results are averaged across 3 seeds. There is very little difference
across networks, which similar patterns across un-transformed
and transformed networks. The translation invariance results are
consistent with Biscione and Bowers (2021), which tested for this
transformation across different datasets.

B.1. Analysis of It (θ ) and Ut (θ )

In the main text, we defined Ĩt (θ ) as the Adjusted Invariance
Metric, a metric that uses the cosine similarity at the last layer
to measure the invariance to object transformations and also ac-
counts for the similarity across objects. To do that, we computed
It (θ ), the representation similarity across objects’ transforma-
tions, and Ut (θ ), the similarity across different objects. These
two metrics are interesting on their own, as they reflect two
different properties that the networks can acquire: It (θ ) is In-
variance of representations under transformations, Ut (θ ) can be
seen as Uniformity of representations across objects. Intuitively,
a good model of the human visual system should possess a high
Invariance within transformations and a low Uniformity between
(different) objects. A striking example where both metrics need
to be considered is a vanilla (untrained) network, which possess a
high Invariance but also a high Uniformity (Fig. B.9 for VGG11). A
vanilla network tends to collapse all representations to the same
output (thus returning the same class for any input) regardless
of objects’ transformation, identity, or category. It is, in some
way, perfectly invariant to transformation, but it achieves that
by trivially being invariant to everything, and it is thus a poor
model of human object representation. Fig. B.9 also shows how
the Adjusted Invariance Metric Ĩt (θ ) accounts for this.

We show these two metrics separately for the networks used
in the main text in Figs. B.10, B.11, and B.12. The network trained
on transformed objects appears to have a high Invariance com-
bined with a low Uniformity (Figs. B.10, B.11, and B.12, bottom):
transformed versions of the same objects are represented simi-
larly, and different objects are represented separately. The pattern
for networks trained on un-transformed objects was more pecu-
liar (Figs. B.10, B.11, and B.12, top). In most cases, the Invariance
and Uniformity were both low, meaning that the network incor-
rectly represented different transformation of the same objects
as different objects, but also that the network correctly sepa-
rated different objects. However, in few cases, the Invariance
was high (e.g. the translation and Viewpoint Invariance for the
Same/Different Network or for GoogLeNet in Fig. B.12, top), but
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the Uniformity was also fairly high, indicating that the network
collapsed together representations of different, transformed ob-
jects. For these networks, different objects seen from different
viewpoints have a similar internal representation. Therefore, by
analyzing It (θ ) and Ut (θ ) separately, we can investigate different
ways in which a network could fail to possess human-like invari-
ance to transformations (that is invariance to transformation that
is not the result of collapsing all representations together).

Appendix C. Discrepancies with previous experiments

In a somewhat similar experiment, Hernandez-Garcia and
Konig (2019) found a low similarity across transformed samples,
which is in direct contradiction with our findings. This can be
accounted by the usage of different metrics: Hernandez-Garcia
and Konig (2019) used Euclidean distance, whereas we used
cosine similarity.

When using the Euclidean distance, change in the magnitude
of the feature maps’ activations (e.g. when using transformations
such as brightness or contrast) will result in a low similarity
score. The cosine similarity is, instead, normalized by magnitude,
and is therefore not affected by an overall scaling of the acti-
vation values. We show that, similarly to Hernandez-Garcia and
Konig (2019), we also obtained lower invariance when using the
Euclidean distance in computing the Adjusted Invariance Metric
Ĩt (θ ) in place of cosine similarity (Fig. C.13, compare this figure
with Fig. 5). Note that there is still a fairly strong separation
between similarity in networks trained on transformed objects
and networks trained on un-transformed objects, which was not
measured in Hernandez-Garcia and Konig (2019). The results
obtained in the present work show that cosine similarity is a
better suited metric for capturing invariance to transformations.

Xu and Vaziri-Pashkam (2021) similarly used the Euclidean
distance to compute the dissimilarity across categories (building
a Representation Dissimilarity Matrix, RDM) at two levels of a
translation transformations (with objects either at the top or at
the bottom of a canvas). They then computed the Representation
Similarity Analysis (RSA) across the RDMs for a wide variety
of CNNs and found low correlation across transformation. Their
analysis is, therefore, very different to our approach, as they were
focused on consistency of representations across transformations,
not invariance of representations. Their finding of low consistency
is nevertheless puzzling, and could be explained by several differ-
ences between ours experiments: firstly, like in Hernandez-Garcia
and Konig (2019), they relied on the Euclidean distance which
has the problem discussed above. Moreover, they used networks
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Fig. B.10. Invariance (It (θ ), continuous lines) and Uniformity (Ut (θ ), dashed lines) for all networks, for rotation, scale, brightness and contrast transformations.
retrained on ImageNet. Biscione and Bowers (2020) showed
hat ImageNet, when trained with specific augmentation (that is,
‘Random Crop’’), could provide a certain degree of translation
nvariance, but it is not clear whether this augmentation was
ctually used and whether it would be enough to generalize to
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such different samples. We hypothesize that pretraining the net-
works on a fully translate dataset, and using the cosine similarity
instead of Euclidean distance, could possibly result in a high RSA,
showing not only invariance, but consistency of representation
across transformations.
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Fig. B.11. Invariance (It (θ ), on the left of each pair of heatmaps) and Uniformity (Ut (θ ), on the right of each pair of heatmaps) for translation.
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Fig. B.12. Invariance (It (θ ), on the left of each pair of heatmaps) and Uniformity (Ut (θ ), on the right of each pair of heatmaps) for change in viewpoint. Overall,
networks trained on transformed objects (bottom) showed high Invariance and low Uniformity. Network trained on un-transformed objects (top) showed for most
cases low Invariance and low Uniformity. In some cases, however, they showed fairly high Invariance, but also high Uniformity, which would produce unnatural
internal representation in which different objects would be represented through the same activation pattern.
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Fig. C.13. Adjusted Invariance Metric Ĩt (θ ) with Euclidean Distance in place of cosine similarity for all transformations and all networks. Euclidean distance is sensitive
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