
Neural Networks 148 (2022) 96–110

S

(
h
o
r
j
(
&
2
i
t
t
w

s
(
s
l
&

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

2021 Special Issue on AI and Brain Science

Biological convolutions improve DNN robustness to noise and
generalisation
Benjamin D. Evans ∗, Gaurav Malhotra, Jeffrey S. Bowers
chool of Psychological Science, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK

a r t i c l e i n f o

Article history:
Available online 17 December 2021

Keywords:
Deep learning
Convolutional neural network
Biological constraint
Gabor filter
Noise tolerance
Generalisation

a b s t r a c t

Deep Convolutional Neural Networks (DNNs) have achieved superhuman accuracy on standard image
classification benchmarks. Their success has reignited significant interest in their use as models of
the primate visual system, bolstered by claims of their architectural and representational similarities.
However, closer scrutiny of these models suggests that they rely on various forms of shortcut
learning to achieve their impressive performance, such as using texture rather than shape information.
Such superficial solutions to image recognition have been shown to make DNNs brittle in the face
of more challenging tests such as noise-perturbed or out-of-distribution images, casting doubt on
their similarity to their biological counterparts. In the present work, we demonstrate that adding
fixed biological filter banks, in particular banks of Gabor filters, helps to constrain the networks to
avoid reliance on shortcuts, making them develop more structured internal representations and more
tolerance to noise. Importantly, they also gained around 20–35% improved accuracy when generalising
to our novel out-of-distribution test image sets over standard end-to-end trained architectures. We
take these findings to suggest that these properties of the primate visual system should be incorporated
into DNNs to make them more able to cope with real-world vision and better capture some of the
more impressive aspects of human visual perception such as generalisation.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The success enjoyed by deep convolutional neural networks
DNNs) in complex perceptual tasks, notably image classification,
as led many researchers to suggest that they accomplish their
bjectives in a similar manner to humans. Architectural and rep-
esentational similarities further reinforce this view of DNNs, not
ust as engineering tools, but as good models of primate vision
Cadena et al., 2019; Guclu & van Gerven, 2015; Khaligh-Razavi
Kriegeskorte, 2014; Kubilius et al., 2016, 2018; Schrimpf et al.,
020; Yamins & DiCarlo, 2016; Yamins et al., 2014). However,
n stark contrast to humans, one of the most striking failures of
hese models is their lack of ability to generalise outside of their
raining sets. This casts doubt on the claims that such models
ork in a fundamentally similar way to humans.
In contradiction to earlier claims that DNNs learn about object

hape as a representational basis for their image classifications
Kriegeskorte, 2015; Kubilius et al., 2016; LeCun et al., 2015), sub-
equent work has found a strong bias towards textures and simi-
ar spatially high-frequency information (Baker et al., 2018; Deza
Konkle, 2021; Geirhos et al., 2019). Likewise in our earlier work,
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ttps://doi.org/10.1016/j.neunet.2021.12.005
893-6080/© 2021 Elsevier Ltd. All rights reserved.
we reported that in the extreme, standard DNNs would base
their image classifications on just a single pixel when correlated
with image category, disregarding the richer shape information
(Malhotra et al., 2020).

The tendency of DNNs to solve tasks in unintended ways has
been characterised as ‘‘shortcut learning’’, whereby decision rules
are learnt which facilitate high performance on standard bench-
marks but fail to generalise to more challenging test sets (Geirhos,
Jacobsen et al., 2020). In this vein, a range of weaknesses of
DNNs have been identified, including susceptibility to adversarial
attacks (Szegedy et al., 2014), bias amplification (Bolukbasi et al.,
2016) and intolerance to noise (Geirhos et al., 2018). Similarly,
other authors have characterised these shortcomings as the mod-
els learning to rely on ‘‘non-robust’’ features that are present
in the training data (Ilyas et al., 2019). While these problems
could be regarded as properties of the dataset which fail to
capture the richness of the visual world, we argue that they stem
from insufficient inductive biases constraining the model to find
more robust and general solutions. To frame it more positively,
robust generalisation needs good inductive biases (Feinman &
Lake, 2018; Lake et al., 2017; Sinz et al., 2019).

Inductive biases may be incorporated into the three core
components of artificial neural network design: the objective
function, the learning rule and the architecture (Richards et al.,
2019), in addition to the training data (‘‘environment’’). In the

https://doi.org/10.1016/j.neunet.2021.12.005
http://www.elsevier.com/locate/neunet
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resent work, we focus on architectural constraints in the form
f prescribed kernels in the first convolutional layer(s), taking
nspiration from the receptive fields found in the early primate
isual system. This particular form of inductive bias has re-
eived relatively little attention in the deep learning community,
ith a strong preference to instead rely upon full end-to-end
raining. This is a stark departure from the hand-tuned, feature-
ngineering approach of classical computer vision research, de-
pite some of this early work being encouragingly biologically
lausible (Akbarinia & Parraga, 2018a, 2018b; Alahi et al., 2012;
iesenhuber & Poggio, 1999).
Although this approach has led to state-of-the-art scores on

ommon benchmarks, end-to-end trained artificial neural net-
orks (ANNs) have nonspecific (weak) biases and learn the statis-
ics of the training data which may not generalise to out-of-
istribution (o.o.d.) data (Sinz et al., 2019). Indeed, recent work
n contrast normalisation demonstrated that even a slight devi-
tion from the training distribution is enough to trigger a failure
o generalise (Akbarinia & Gil-Rodríguez, 2020). Arguably, this
as become an example of Goodhart’s Law (Strathern, 1997),
here DNNs further surpass human performance on common

mage recognition benchmarks, yet no longer represent good
easures as they fail to capture many interesting and elementary
roperties of visual perception.
While end-to-end training typically yields features resembling

abor filters, an array of other filters emerge which lack a clear
orrespondence to those observed in the early visual system,
urther suggesting that DNNs are under-constrained (Krizhevsky
t al., 2012, Fig. 3). These learned non-Gabor filters may be what
nable end-to-end trained models to over-fit the data, attaining
igh accuracy in classifying images with similar statistics but
ecoming brittle to perturbations and less able to generalise to
.o.d. images. As expected from the ‘‘bias–variance tradeoff’’ in
upervised learning, the approach of fixing early convolutional
orms has not (yet) achieved such high performance scores on
tandard benchmarks as with full end-to-end training. However,
ur previous results suggest that they may encourage DNNs to
evelop more robust and generalisable representations (Malhotra
t al., 2019, 2020).
Furthermore, there is a strong motivation to fix the early

onvolutions from both the perspective of natural image statistics
Bell & Sejnowski, 1997; Olshausen & Field, 1996) and a develop-
ental biology perspective (Briggman et al., 2011). Useful motifs
bout stable properties of the environment are most likely to pass
hrough the ‘‘genomic bottleneck’’ conferring an evolutionary
dvantage by alleviating the burden on the individual to learn
hem (Zador, 2019), especially if they are ‘‘perceptual universals’’
f the world (Shepard, 1994).
Early work with DNNs showed how kernels strongly resem-

ling Gabor filters naturally arise through training on naturalistic
mages (along with more obscure filters) (Krizhevsky et al., 2012)
hile recent computational modelling has even demonstrated
ow the particular hierarchy of receptive fields may arise from
he retinal bottleneck (Lindsey et al., 2019). If centre-surround
nd Gabor filters form a visual alphabet of the natural world then
hey should be pre-wired (Gaier & Ha, 2019) or fixed rapidly
ue to evolution-optimised architectures (Zador, 2019) and re-
ain relatively stable throughout the lifetime of the individual

and so also in models). In contrast to classical computer vi-
ion approaches, the features of the early layers are not ‘‘hand-
engineered’’, but essentially ‘‘evolution-engineered’’.

Besides potential gains in ‘‘real-world’’ use (through increased
esilience to noise and better o.o.d. generalisation), constrain-
ng DNNs with biologically-inspired inductive biases may also
elp to make them more interpretable by encouraging them to

evelop internal representations which are better aligned with
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their biological counterparts. This would potentially be a useful
development for shining a light on otherwise obscure ‘‘black-box’’
models, allowing their decision processes to be better understood,
refined, and overridden when necessary. Accordingly, we exam-
ine the most activating features of the trained models to visualise
the differences in their internal representations.

Early work with Gabor kernels in convolutional neural net-
works focussed on the energy efficiency gains, tolerance to scale
and rotational changes and speed of training convergence af-
forded by having fewer modifiable parameters while maintaining
a structure conducive to image classification (Alekseev & Bobe,
2019; Luan et al., 2018; Meng et al., 2019; Sarwar et al., 2017).
However, like other promising research with biologically moti-
vated front-ends, without further constraining the parameters
of the Gabor kernels, the models develop an over-reliance on
the spatially high-frequency filters and forfeit their robustness to
noise (Wu et al., 2019).

In our previous work with Gabor-kernel convolutions, the fil-
ters acted as a kind of regulariser, steering the network away from
relying upon non-robust (yet diagnostic) features towards more
robust representations (Malhotra et al., 2019, 2020). Subsequent
work replacing up to the first seven layers with fixed Gabor
filters (Pérez et al., 2020) or using >20–40× more Gabor filters
(Dapello et al., 2020) demonstrated more resilience to adversarial
attacks over the corresponding end-to-end trained models. The
latter study showed that the single biggest factor in attaining
this improvement was the inclusion of stochasticity (Gaussian
noise), particularly during training. This further suggests that the
modifications worked to help the model develop more robust
representations, in a way accounted for in earlier work by training
on similar noise to the test set (Geirhos et al., 2020c).

In the work presented here, we specifically examined the form
of fixed kernels in the early convolutional layers of otherwise
standard DNNs for their effects on internal representations, ro-
bustness to noise, and generalisation beyond the training set.
In particular, we investigated a very human o.o.d. generalisa-
tion ability — to classify images based on simple line drawings
(Hochberg & Brooks, 1962), their global shape features or their
bounding contours rather than local textures (Baker et al., 2018).

We hypothesised that biologically inspired filter banks would
make the models (a) more robust to noise perturbations applied
to i.i.d. images, (b) better able to generalise to o.o.d. images
and (c) develop more interpretable internal representations. Our
results support these hypotheses for several types of common
noise perturbations, reveal a 20–35% improvement in accuracy
on our novel generalisation test sets and demonstrate striking
differences in the internal representations.

2. Methods

Standard deep convolutional neural networks were trained
with full end-to-end learning to obtain their baseline perfor-
mance on image classification tasks. Each model architecture was
then modified by configuring the first convolutional layer(s) to
have fixed banks of kernels for each of several forms described
below. These modified models were then trained on the same
images as the standard models for 100 epochs to ensure that
they reached convergence. The models were then compared by
their performance on noise-perturbed validation images, gen-
eralisation test images and their internal representations. The
models were implemented with Keras and Tensorflow 2. All
simulation and analysis code (written in Python 3) is open-source

and available at github.com/bdevans/BioNet.

https://github.com/bdevans/BioNet
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Fig. 1. Illustration of the banks of fixed kernels used in the first convolutional layer(s).
d

2.1. Models

Several standard DNN architectures were used including
ALL-CNN (Springenberg et al., 2015), ResNet50
(He et al., 2016) and VGG-16 (Simonyan & Zisserman, 2015). For
each model, either the original architecture was used (‘‘Original’’)
for full ‘‘end-to-end’’ training or the first convolutional layer was
replaced with a bank of unmodifiable kernels. These fixed kernels
took one of the following specific forms: Gabor, Difference of
Gaussians (DoG) or Low-pass filters (chosen as a non-biologically
motivated alternative way to smooth out noise). A ‘‘Combined’’
front-end was also used, whereby the first convolutional layer of
a standard DNN was replaced with two fixed convolutional layers
consisting of a DoG layer followed by a Gabor layer, modelling the
receptive field organisation of the early visual system. Each fixed
kernel was set to 63 × 63 pixels in order to allow the filters to be
 t
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adequately expressed without significant truncation at the edges,
over a biologically relevant range of spatial scales. In the case of
the Combined front-end, the kernels were reduced to 31 × 31
pixels due to computational constraints. The choice of (other)
parameters for these convolutional kernels are given in Table 1
and the resulting kernels are visualised in Fig. 1.

In all cases, the input layer was modified to reflect the up-
scaled image size and conversion to greyscale, leaving only one
luminance channel (224 × 224 × 1) as described in Section 2.3.
Similarly, the output layer was reduced to classify each image into
one of the 10 categories of CIFAR-10.

2.1.1. Fixed convolutional kernels
Low-Pass: Low-pass filters were implemented as a simple 2-

imensional Gaussian kernel (Eq. (1)) which was convolved with
he inputs, effectively blurring them by a degree parameterised
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able 1
arameters of the fixed convolutional kernels.
Low-pass Difference of Gaussians Gabor

σ = {1, 2, 4, 8} σ = {1, 2, 4, 8} σ = {8}
γ = {1.6, 1.8, 2.0, 2.2} γ = {0.5}
ρ = {+1,−1} b = {1, 1.8, 2.6}

θ = {0, π4 ,
2π
4 ,

3π
4 }

ψ = {
π
2 ,

3π
2 }

by σ , the standard deviation of the Gaussian.

σ (x, y) =
1

2πσ 2 e
−

x2+y2

2σ2 (1)

In the models presented, four channels (corresponding to four
values of sigma) were used for the low-pass front-end as detailed
in Table 1 and are shown in Fig. 1a.

Difference of Gaussian: The Difference of Gaussians kernel
(Eq. (2)) is the result of a surround Gaussian subtracted from a
(typically smaller) centre Gaussian. The standard deviation of the
centre Gaussian is parameterised by σ and the standard deviation
of the surround Gaussian is parameterised by γ · σ where γ ≥ 1.
n this work, the difference in Gaussians is multiplied by ρ ∈

+1,−1} to model ‘‘on-’’ and ‘‘off-centre’’ ganglion cell receptive
ields respectively.

σ ,γ ,ρ(x, y) = ρ

(
1

2πσ 2 exp
(

−
x2 + y2

2σ 2

)
−

1
2πγ 2σ 2 exp

(
−

x2 + y2

2γ 2σ 2

))
(2)

The Difference of Gaussians front-end had a total of 32 chan-
els from combining values for three parameters as described in
able 1 and are shown in Fig. 1b.
Gabor: The Gabor function is an oriented sinusoidal grating

onvolved with a Gaussian envelope (Eqs. (3)–(5)) where x and y
pecify the position of a light impulse in the visual field (Petkov
Kruizinga, 1997).

λ,θ,φ,σ ,γ (x, y) = exp
(

−
x2θ + γ 2y2θ

2σ 2

)
exp

(
i
(
2πxθ
λ

+ φ

))
(3)

θ = x cos θ + y sin θ yθ = −x sin θ + y cos θ (4)

Rather than specify the wavelength of the sinusoidal compo-
ent (λ) in pixels, it is more natural to set the bandwidth, b, which
escribes the number of cycles of the sinusoid within the Gaus-
ian envelope, (which has a fixed standard deviation, σ , matched
o the other front-ends). The wavelength of the sinusoidal factor,
, is therefore set indirectly through b, and σ :

= σ · π ·

√
2

ln 2
·
2b

− 1
2b + 1

(5)

The Gabor front-end used had a total of 24 channels from
combinations of values across its five parameters, chosen to span
a range matched to primate primary visual cortex (Petkov &
Kruizinga, 1997), shown in Table 1 and visualised in Fig. 1c.

In the case of the Combined front-end models, the kernels
of the first two convolutional layers are as shown in the DoG
and Gabor plots (Fig. 1b&c), however the kernel (canvas) size
was reduced to 1

4 of their size (31 × 31 pixels) due to memory
limitations.

2.2. Training

All models were trained with the modified (224 × 224 and
greyscale) CIFAR-10 training images (unperturbed and shuffled)
99
to minimise categorical cross-entropy using Stochastic Gradient
Descent (SGD) with a batch size of 64, a learning rate of 10−4

and a decay of 10−6. Training proceeded for 100 epochs, reducing
the learning rate on plateau (after 5 epochs) by a factor of 0.2.
Each model architecture was trained for five different random
seed initialisations (eliminating seeds which failed to train) on
NVIDIA GPUs.

Example kernels learnt in the first convolutional layer through
this training procedure are illustrated in Supplementary material.
These 64 kernels are taken from a VGG-16 model (modified and
trained as described) with each being 3 × 3 pixels in size.

2.3. Stimuli

In all cases, the training images were based on the CIFAR-
10 dataset (which contains 10 classes of 6000 images per class,
with 1000 of each held out for validation, see www.cs.toronto.
edu/~kriz/cifar.html). For testing, three categories of images were
used; CIFAR-10 validation images, noise-perturbed CIFAR-10
validation images or generalisation image sets (described later).

To simplify the filter banks, we converted all images to
greyscale according to the ITU BT.601 luma transform conversion
formula (Y = 0.299 · R + 0.587 · G + 0.114 · B), which models
the trichromatic sensitivities of the human eye. Using a method
similar to Geirhos et al. (2018), the CIFAR-10 images were
then upscaled from their original dimensions of 32 × 32 pixels
to 224 × 224 pixels using Lanczos resampling with luminosi-
ties clipped to [0, 255]. Each image was further preprocessed
before presentation to the network by rescaling the intensity
values from [0, 255] to [0, 1]. Under testing conditions where the
images were perturbed, noise was applied after this rescaling,
then the values were clipped in the range [0, 1] before rescaling
back to the range [0, 255], as expected by the standard DNN
architectures.

The mean and standard deviation were calculated across the
entire (modified) training set and used for feature-wise centring
and normalisation. Data augmentation was used to randomly
shift the images vertically and horizontally by up to 10% (24
pixels) and to randomly apply a horizontal flip.

2.3.1. Noise perturbations
Building on the work of Geirhos et al. (2020c) we explored the

robustness of representations developed in DNNs with the range
of different trainable and fixed convolutional kernels described.
The CIFAR-10 validation images were perturbed with a battery
of common types of noise, systematically spanning a range of
severity, before being presented to the networks. A summary of
these noise perturbations is given in Table 2 with an illustration
of them applied to one of the validation images in Fig. 2.

2.3.2. Generalisation images
To test the networks’ abilities to classify images outside of

the training set, we created a novel set of test images (CIFAR-
10G) containing stylised (monochrome) images for each of the ten
CIFAR-10 categories (Evans, 2021). These images contain mainly
shape information, with very limited or no texture information at
all, providing a means to assess a model’s ability to classify images
without relying on the usual shortcut of spatially high-frequency
information. Crucially these images are out-of-distribution (o.o.d.)
in contrast to the reserved validation images which are inde-
pendent and identically distributed (i.i.d.), as commonly used in
machine learning research.

The images constituted three independent generalisation test
sets: line drawings, silhouettes and contours. Each set had ten
examples for each of the ten CIFAR-10 categories. The contour
images were derived from the silhouettes by hollowing out the

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
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able 2
mage perturbation descriptions and severity.
Perturbation Description Levels

Uniform Pixel-wise additive uniform noise drawn from [−w,+w] then clipped at [0, 1]. w ∈ {0, 0.1, . . . , 0.9, 1.0}
Salt and pepper Pixels are randomly set to either black or white with probability, p. p ∈ {0, 0.1, . . . , 0.9, 1.0}
High-pass High-pass filtering with standard deviation of the Gaussian filter, σ . σ ∈ 10{2,1.8,...,0.2,0}

Low-pass Low-pass filtering with standard deviation of the Gaussian filter, σ . σ ∈ 10{0,0.2,...,1.8,2}

Contrast Contrast, c adjusted by setting each pixel intensity, i, according to i′ = (1 − c)/2 + i · c . c ∈ {1, 0.9, . . . , 0.1, 0}
Phase scrambling Phases are randomly shifted (in the Fourier domain) in the interval [−w,+w] degrees. w ∈ {0, 18, . . . , 162, 180}
Darken Each pixel intensity, i, is reduced by l. l ∈ {0, 0.1, . . . , 0.9, 1}
Brighten Each pixel intensity, i, is increased by l. l ∈ {0, 0.1, . . . , 0.9, 1}
Rotation Each image is rotated by θ degrees. θ ∈ {0, 90, 180, 270}
Inversion Pixel intensities are inverted. v ∈ {0, 1}
Fig. 2. Noise perturbations at each level applied to an example CIFAR-10 image.
haded regions to leave only their outlines using the GNU Image
anipulation Program (GIMP). Finally, three additional sets were
reated by inverting the initial three sets. They came from a
ariety of internet sources but were all designated as free to use
or commercial or other purposes. All six generalisation test sets
re illustrated in Fig. 3.
As a confirmation that these new generalisation image sets are

ruly o.o.d., the summary statistics (mean and standard deviation)
f each image are plotted, along with those of the modified
IFAR-10 train and validation sets, in Fig. 4. Since the pixel
ntensities are rescaled to lie in the range [0, 1], the inverted
mages are reflected about the midpoint (x = 0.5) with respect
o the original images they were derived from. While the training
nd validation sets lie on top of each other in the central region
100
of the space, due to their sparse, largely binarised pixel intensi-
ties, the generalisation test sets lie on a manifold arcing around
the edge of the space. This spatial separation demonstrates that
they constitute out-of-distribution test sets with respect to the
CIFAR-10 images.

3. Results

3.1. Effect of the base model

We first checked that each model has broadly similar accu-
racy on the (unperturbed) CIFAR-10 validation set, and that the
pattern of differences due to the different convolutional ‘‘front-
ends’’ holds for different ‘‘back-end’’ architectures. In Fig. 5, the
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Fig. 3. Generalisation test sets.
mean accuracy for each model (front-end/back-end combination)
is plotted with the error bars representing the 95% confidence
intervals calculated from five different random seeds.

While the absolute levels of accuracy varied across the dif-
ferent architectures (with the performance of ALL-CNN being
relatively low), importantly the relative pattern across front-
ends remained very similar. We note from preliminary testing
101
that, contrary to the trend of using deeper networks, the ac-
curacy was largely unchanged after increasing the depth of the
model from VGG-16 to VGG-19. We note also that even the
best performing models attain only around 90% accuracy, mak-
ing them fall short from state-of-the-art for image classification.
However, these figures serve as an adequate baseline for com-
parison to each model’s performance under more challenging and
psychologically meaningful conditions.
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t

Fig. 4. Distributions of image statistics. The CIFAR-10 training and validation images are highly overlapping and occupy the central region of the space. Conversely,
he generalisation images lie on a manifold forming an arc around this region, constituting out-of-distribution test sets.
Fig. 5. Classification accuracy on the CIFAR-10 validation set. The ResNet and VGG models attained very similar levels of performance across all convolutional
front-ends (around 90% accuracy) while ALL-CNN scored around 20% lower with more variability across front-ends. The line in each bar indicates the 95% confidence
interval across the five random seeds. Grey dotted lines indicate the mean accuracy across convolutions for each base model architecture.
3.2. Robustness to noise

After training to convergence on the modified (monochrome
and upscaled) CIFAR-10 training images, the networks were
tested on the CIFAR-10 validation set with various types and
degrees of common noise perturbation, as described in Table 2.

Classification accuracy across the five runs of the VGG-16
based models for each convolutional front-end under various
levels of noise are given in Fig. 6 as an example. The performance
curves for ALL-CNN and ResNet50 are given in Supplementary
material, SFigs 2–3.

The perturbations used in this research are based upon previ-
ously published tests and common image degradations (Geirhos
et al., 2020c). As such, the fixed convolutional kernels used are
not expected to lead to robustness in all cases. Earlier work
suggests that resilience to uniform and salt-and-pepper noise
should be improved (Malhotra et al., 2019, 2020). Additionally,
biologically inspired filters are expected to be more resilient
to brightened, darkened and reduced contrast images due to
their regions of opponency which make them sensitive to spa-
tial contrasts rather than absolute luminance levels. Conversely,
end-to-end trained models are likely to maintain higher perfor-
mance for high-pass filtered images owing to their preference for
spatially high-frequency information such as their texture bias
(Geirhos et al., 2019). For other perturbations such as rotation,
we have no strong expectation of either an increase or decrease
in robustness performance relative to the standard model.

In many cases, the biologically-inspired hard-coded convo-
lutional front-ends (Gabor filters, Difference of Gaussians and
Combined) are more or similarly robust to these types of image
corruptions than their end-to-end trained counterparts (with the
102
exception of High Pass perturbations). In particular, the Gabor
and Combined models exhibited considerably more tolerance to
Uniform and Salt and Pepper noise (Fig. 6A&B) partly due to
their smoothing effect. However, this characteristic alone cannot
entirely explain their large margin of improvement over other
filters, due to the relatively poor performance of Low-pass filtered
models under the same conditions, which serve as null models
to test this idea. Instead, the combination of smoothing within a
spatially structured kernel (i.e. elongated regions of opponency)
appears to have helped reduce the effect of such unstructured
noise on the classification of natural images which consist of
similarly spatially-structured features such as bars and edges (Bell
& Sejnowski, 1997; Olshausen & Field, 1996). Gabor filters thereby
offer the combination of edge-detection and spatial smoothing,
helping them detect fundamental visual features while reducing
their noise.

Interestingly, the Gabor-filtered networks tend to perform
worse than the others when classifying images processed with
High Pass filtering, (Fig. 6C), presumably due to their bandwidth
and spatial scale no longer being appropriate for the thinner
edges and lines in this condition.

For perturbations such as phase scrambling and rotations
(Fig. 6F&I) all types of filter are quite similarly affected. Broadly
comparable perturbation tolerance was also obtained for Con-
trast, Darken and Brighten (Fig. 6E,G&H), with the exception of
the Low-pass front-end, which was found to smooth away the
finer details of the images, further reducing their contrast and
reducing activation in subsequent layers.

While the Combined models exhibited similar patterns of tol-
erance to noise perturbation as the Gabor models, the absolute
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Fig. 6. Classification accuracy of VGG-16 based models under each type and degree of noise perturbation. The Gabor and Combined front-ends are particularly
esilient to Uniform and Salt and Pepper noise, while the Combined front-end is able to recognise inverted images. Shading around each line indicates the 95%
onfidence interval across the five random seeds. The grey dashed lines represent chance level (10%) performance.
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ccuracy was typically lower. This may be explained by the infor-
ation lost due to the extra DoG layer, as they may only occur in

he visual system as a means of overcoming the retinal bottleneck
Lindsey et al., 2019). However, one notable exception is in the
ase of image inversion (Fig. 6J) where most models drop by
round 30% accuracy, whereas the Combined model is essentially
naffected. This is investigated further in Section 3.3.
To check that these effects are not artefacts of using up-

caled CIFAR-10 images, the models were retrained with the
ame hyper-parameters on the natively high-resolution ecoset
mages (Mehrer et al., 2021). For direct comparison, a subset
f ecoset image categories were used and mapped on to the

original CIFAR-10 image categories (see Supplementary mate-
rial, STable 1). When tested on the image perturbations, broadly
 c
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similar results were obtained across the types and ranges of
severity, as illustrated in Supplementary material, SFig. 4.

While the original (unperturbed) validation images are i.i.d.
ith the training set (as illustrated in Fig. 4), the models were
ot trained with any of the noise types, making this experi-
ent a mild test of o.o.d. generalisation and a good test of more

‘real-world’’ image classification conditions.

.3. Generalisation

As a strong test of o.o.d. generalisation, the models’ classifica-
ion accuracy was assessed on the novel, stylised image test sets
ollected for this study (as shown in Fig. 7). In almost all cases,
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Fig. 7. Classification accuracy for generalisation test sets. In classifying out-of-distribution images, the Original (end-to-end) trained models typically score lowest.
Classification accuracy with the Low-pass front end is slightly higher on average but less consistent across the test sets. The biologically-inspired convolutional
front-ends have comparable performance (DoG front-ends) or substantially exceed the accuracy of the Original models (Gabor and Combined front-ends). Generally,
all models score highest on the line drawings, with contours and silhouettes presenting the biggest challenges. The line in each bar indicates the 95% confidence
interval across the five random seeds. The grey dashed lines represent chance level (10%) performance.
networks with a Combined front-end scored highest, closely fol-
lowed by Gabor models. One exception is on the silhouette test
sets (original and inverted) where the Gabor front-end models
outperformed the Combined models since these images had only
edges (rather than other features such as lines) which the initial
layer of DoG kernels are less sensitive to compared to Gabor
kernels. Following those models, either the Difference of Gaussian
or the Low-pass front-ends tended to slightly outperform the
baseline Original models but were broadly comparable. Similar
patterns of results were obtained when training the same models
on a subset of ecoset, except for silhouettes where models with

Low-pass front-end tended to perform better, as shown in
upplementary material, SFig. 5.
The original end-to-end trained models trail those which in-

lude a bank of Gabor filters (Gabor, Combined) by approxi-
ately 10% across generalisation test sets for ALL-CNN, 15–35%

for ResNet models and 20–30% for VGG models. While there is
clearly room for further improvement, these results demonstrate
that a substantial margin in performance is conferred on standard
DNNs in o.o.d. test images simply by fixing the form of the first
layer of convolutions with biologically-plausible Gabor kernels.

Again the Combined front-end exhibits no performance drop
associated with inverting the images, (see Fig. 7, left column
versus right column) unlike small but consistent drops for most
other front-ends, especially the Low-pass models. Inspection of
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the activation patterns in the early layers of the Combined models
reveals that the initial DoG layer provides an effective remapping
of the inputs. Since for each DoG filter spatial scale and centre-
surround ratio there is both an ‘‘on-’’ and ‘‘off-centre’’ receptive
field, they can be matched to the inverted or original images
(respectively) to yield the same activation pattern for each. Sub-
sequently, the set of odd Gabor filters are then applied to these
contrast-enhanced activation patterns to extract the edges as a
foundation for more complex representations in subsequent lay-
ers (Fig. 8). Essentially, having a layer of on- and off-centre DoGs
followed by Gabor filters with equal and opposite phases means
that opposite combinations of these filters could be matched to
produce the same patterns of activation for both an original image
and an inversion of it, as shown by the cosine similarity measures.

In order to test how the convolutional front-ends affect the
models’ abilities to accurately classify o.o.d images under noisy
conditions, we applied the same battery of image perturbations
(shown in Fig. 2) to the generalisation test image sets (shown
in Fig. 3). The results for one example generalisation test set
(line drawings) are shown in Fig. 9 on the VGG-16 model archi-
tecture. Results for the other generalisation test sets (obtained
with the same model architecture) are presented in Appendix A
(Supplementary material).

Generally, the advantage conferred on the models by the
biologically-inspired kernels holds across the set of perturbations,
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Fig. 8. Activation maps generated from an example image and its inversion in the first four channels of the first convolutional layer(s). While the activations for
the original and inverted images in the Gabor convolutions (d) appear similar to those in the Gabor layer of the Combined model (f), they are shifted with respect
to one another. Conversely the preprocessing of the Combined front-end’s DoG layer (e) compensates for this phase-shift. The cosine similarities are shown for pairs
of activations resulting from the original and inverted images.
with their performance degrading more slowly relative to the
Original front-end. In some cases the classification accuracy of
the models improves slightly as the strength of perturbation
increases. In the case of Low Pass perturbations (Fig. 9D), this
is likely due to the smoothing effect thickening the lines of the
drawings, making them better able to activate the filters of the
105
first convolutional layer (whether fixed or learnt from naturalistic
images). It is less clear why there would be an improvement to
classification after applying, for example, Phase Scrambling but
it is likely that such perturbations simply brought the images
away from their outlying manifold (Fig. 4) and closer to the image
statistics of the training set.
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Fig. 9. Classification accuracy of VGG-16 based models on perturbed line drawings. The models with biologically-inspired convolutional front-ends (notably Gabor
nd Combined front-ends) typically maintain their advantage over the Original (end-to-end trained) models with the exception of low contrast and very dark
erturbations. Shading around each line indicates the 95% confidence interval across the five random seeds. The grey dashed lines represent chance level (10%)
erformance.
.4. Representations

In order to examine how the models’ internal representations
re affected by the form of the initial convolutional kernels, the
ost activating features were determined for a selection of layers

Erhan et al., 2009). Initially, an image composed of random pixel
ntensities is presented to each model, which is then modified
hrough gradient ascent for 1000 epochs to find the most activat-
ng feature(s) for that particular channel (subject to the random
nitialisation). The example channels were randomly chosen from
he pooling layers, as they would effectively tile the preferred
eatures of the preceding convolutional layer across the input
anvas (although the convolutional layers produced very similar
esults). Representative examples of the most activating features
106
for each of the VGG-16 based models (for each front-end) are
visualised in Fig. 10.

There are clear differences in the most activating features
across the different front-ends, evident in the visualisations, par-
ticularly in the earlier layers. The end-to-end trained (Original
front-end) network prefers less structured and spatially very
high-frequency patterns resembling noise. Conversely, the fixed
kernel front-ends are all more activated by smoother, more struc-
tured patterns, with Turing patterns and oriented gratings ob-
served for the Difference of Gaussians and Gabor front-ends re-
spectively. It is often claimed that end-to-end training produces
banks of Gabor-like units in DNNs that resemble simple cells of
V1 (Krizhevsky et al., 2012). However, not only do these models
learn a wide range of units, many of which do not resemble the
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Fig. 10. Most activating features for a selection of layers in models based on VGG-16 with different initial convolutional layers.
eceptive fields of neurons in early visual cortex, but our findings
lso highlight that hand-wiring the first convolutional layer(s)
esults in quite different learned representations in higher levels
s well.
The learned features in the higher layers of the different mod-

ls appear to be more similar than in early layers, in this case,
ppearing to converge to small blobs with antagonistic surrounds.
ere it is hard to make any comparisons between the learned
eature detectors in models and the brain because we have only
limited understanding of the features that drive single neu-

ons in the higher levels of the visual system. Furthermore, any
omparison between artificial and biological neural networks is
urther complicated by the fact that different methods of gen-
rating maximally activating images for single-units in ANNs
an produce quite different outcomes, varying from unstructured
oise to highly regular patterns, or even interpretable images
Nguyen et al., 2017). Similarly, different measures of single-unit
electivity provide very different estimates of selectivity (Gale
t al., 2020). Importantly though, imposing fixed convolutional
ernels in the early layers produces a major restructuring of the
107
learned internal representations in otherwise standard DNNs —
differences extending throughout the networks which are also
found to have improved robustness and generalisation.

4. Discussion

The impressive performance of deep convolutional neural net-
works on various image classification benchmarks has led to a
great deal of interest within the neuroscience community, where
researchers are now exploring the similarity of human and DNN
vision (Schrimpf et al., 2020). Indeed, optimising DNNs for image
classification has been demonstrated to provide the best fit to
observed neural activity in the primate visual system (Yamins
et al., 2014) and yield similar patterns of representations across
categories of objects as measured by Representational Similarity
Analysis (Kriegeskorte, 2015). On this view, end-to-end train-
ing is the best approach to date for both image classification
benchmarks and modelling human vision, so few inductive biases
beyond convolution need to be incorporated.
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However, here we show that hard-coding a filter-bank in stan-
ard DNNs that approximates the organisation of the early visual
ystem improves the performance on noise-perturbed or out-of-
istribution images, compared to their standard (unconstrained)
ounterparts trained end-to-end. For example, the biologically
onstrained models were much better able to classify line draw-
ngs, mimicking human infants, who can readily identify them
ithout any explicit training (Hochberg & Brooks, 1962). Typical
easures of model performance overlook many of these more

nteresting and elusive properties of biological visual perception,
otably their ability to generalise, potentially driving research
owards more narrowly defined goals and away from being more
aithful models of vision.

It is also important to acknowledge that our biologically-
nspired networks showed limited improvements compared to
tandard DNNs in some conditions, and in a few cases performed
ore poorly than their end-to-end trained counterparts. Clearly
dding a fixed convolutional front-end is far from sufficient to
vercome the limitations of current DNNs as models of human
ision. This is perhaps not surprising, considering how different
ypical artificial and biological visual systems are, for instance
he paradigm of rate-coding rather than temporal (spike) coding
Rullen & Thorpe, 2001), and the form of inputs they receive, such
s static versus dynamic images. However, we argue that adding
biologically inspired front-end to standard DNNs represents a
romising direction for advancement, especially for endowing
hem with better o.o.d. generalisation.

At an intuitive level, we may consider the benefit that
iologically-inspired convolutional kernels confer on DNNs for
lassifying naturalistic images as arising from how they mimick
he forms found through millions of years of evolution, which
ere useful and stable enough for decomposing natural visual
cenes so as to be gradually enshrined in the genome. Both
ifference of Gaussians and Gabor filters each incorporate antag-
nistic regions, whereby a feature of the visual scene (change in
llumination) can be reliably detected and signalled in an energy
fficient way (Vincent et al., 2005), the selection for which was
ikely driven by the need to constrain the high metabolic cost
f transmitting information through spikes in the cortex (Lennie,
003). By integrating their signals over a small spatial region, this
lso increases the reliability of the signal, by smoothing out sharp
eviations in individually unreliable photoreceptors or pixels. In
articular, developing Gabor-like receptive fields, with elongated,
moothed regions of opponency to signal changes, allows the
rganism or model to reliably detect bars and edges, which may
hen be used as the building blocks of shape — a key precursor to
eveloping a concept of objects and a more reliable property for
dentification than low-level details such as texture.

Which features of biological vision need to be included in
odels in order to support human performance is still an open
uestion. For example, the on- and off-centre receptive fields of
etinal ganglion cells may simply be a means to compress the
nformation from the photoreceptors through the retinal bottle-
eck in such a way as to be most faithfully reconstructed and
xpanded in the cortex (Vincent et al., 2005), without providing
ny additional benefit over Gabor-like receptive fields. This may
xplain the slightly mixed results with Gabor (only) versus Com-
ined front-ends, such as their slightly weaker ability to classify
ilhouettes (compared to the Gabor front-end). If Gabor filters
o indeed constitute an optimal ‘‘visual alphabet’’ as the first
tep in decomposing a natural visual scene when the information
ottleneck is removed, then any additional (preceding) layer only
erves to reduce the information content reaching them. It may
e, however, that in order to cope with image inversions, addi-
ional pooling between Gabor filters of opposite phase is required
potentially an experimentally testable principle underpinning

he finely structured organisation of the visual cortex.
108
The huge leap in performance and subsequent resurgence
f interest in neural networks (then known as connectionist
odels) was brought about by the extraordinary increase in com-
utational power through harnessing GPUs, along with access to
uch larger labelled image sets, which allowed much larger net-
orks to be trained on vast amounts of training data (Krizhevsky
t al., 2012). This trajectory still guides much of the community’s
hinking on the best approach, typically eschewing such innate
europhysiological details and remaining largely empiricist in
referring end-to-end training. Despite a growing list of fail-
res of such DNNs in classifying images under more challenging
onditions (Geirhos et al., 2018, 2020c), and demonstrations of
triking differences between human and DNN vision (Dujmović
t al., 2020; Malhotra et al., 2020), there is still the widespread
iew that many of these failures can be addressed by further
mproving the datasets that the models are trained on (Mehrer
t al., 2017, 2021), or modifying the objective functions, including
ore emphasis on self-supervision (Chen et al., 2020) rather then
onstraining the models themselves with more inductive biases.
However, from examining the most activating features which

re learnt throughout the networks, it is clear that constraining
nly the form of the initial convolutions has far-reaching effects
or higher level representations which may impact the model’s
bility to generalise. It is clear from this perspective, that even
f benchmark-based summaries of the model’s performance are
ighly similar to those of their biological counterparts, it is un-
ikely that they are achieved in the same way, or that the same
ierarchical organisation has necessarily developed (Thompson
t al., 2021). It is only when testing models on more challenging
atasets, that humans can readily identify, for example the dis-
orted i.i.d. images or o.o.d. images of the present work, that these
ifferences are manifest. The challenge in developing biological
odels of vision is to build models that explain or at least recapit-
late core human visual capacities, such as scale and translation
nvariance (Blything et al., 2021; Han et al., 2020), the capacity
o identify objects in novel orientations in 3D space (Erdogan &
acobs, 2017) and tolerance to occlusion (Tromans et al., 2012),
mongst many other human visual (limitations and) capacities.
Even when a bottleneck and other architectural constraints

re added to networks to encourage the formation of (more)
abor filters (Lindsey et al., 2019), there is still no hyper-column
rganisation of the filters or other potentially important details,
nd crucially, models still learn a wide range of other (spatially
igh-frequency) filters (Krizhevsky et al., 2012, Fig. 3), many of
hich do not occur in V1 or elsewhere as far as we know. This
ay help explain the brittleness of current DNNs with these
xtra kernels over-fitting to specific training sets, making the
odels less robust to distortions of i.i.d. images and consider-
bly less able to recognise o.o.d. images. Ultimately, whether
he V1 hyper-column structure is innately specified, or develops
hrough (genetically guided) assimilation of early visual experi-
nce, current unconstrained DNNs trained end-to-end fail to cap-
ure the human ability to identify degraded images or generalise
o out-of-distribution datasets.

.1. Future work

To further enhance robustness and generalisation, it is likely
hat other modifications to the core components of ANNs are
ecessary, for example the addition of recurrent connections
Kietzmann, McClure et al., 2019; Kietzmann, Spoerer et al., 2019)
r feedback connections (Kreiman & Serre, 2020). Also, in line
ith more standard approaches, it is undoubtedly important to
lso improve the training datasets and learning objectives in
rder to make models more similar to Infero-Temporal Cortex
IT), for example ‘‘soft’’ training labels (Peterson et al., 2019).
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n the current simulations we used supervised learning to train
ur models on CIFAR-10, and it would be interesting to see the
mpact of adopting different training objectives on larger datasets.
or instance, there is some recent evidence that self-supervision
n ImageNet can be used by networks to classify images more
n the basis of shape compared to texture, consistent with the
hape bias observed in humans (Geirhos et al., 2020b). In future
ork it will be important to understand how combining more

nductive biases with better training regimes impacts on network
erformance.

.2. Conclusions

In the presented work we have shown that adding biologi-
al filter banks to constrain standard DNN architectures reduces
heir capacity to find superficial solutions by ‘‘shortcut learning’’
Geirhos, Jacobsen et al., 2020). In particular, our Gabor and
ombined (DoG+Gabor) front-end models learned more struc-
ured internal representations, were more robust to a number
f common noise perturbations, and most importantly, showed
etter generalisation to our novel o.o.d. test sets. We take these
indings as evidence that researchers should incorporate more
iological constraints in DNNs to better mimic human perfor-
ance, and indeed, it may be an important step in developing
achine learning systems that generalise better. More generally,
e also advocate a wider perspective on model evaluation than
narrow focus on common benchmark scores, as this is likely

o lead to models which miss many of the more interesting and
seful properties of human vision.
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