

A MODULAR TEST-RIG FOR SHARED THERMO-FLUID DYNAMICS EXPERIMENTS IN REDUCED GRAVITY **ENVIRONMENT**

Novel Hybrid Heat Pipe

L.Pietrasantaa*, L.Pietrasanta@brighton.ac.uk D. Fioriti^b, davide.fioriti@ing.unipi.it M.Bernagozzi, M.Bernagozzi@brighton.ac.uk N. Michea, N.D.D.Miche@brighton.ac.uk L. Araneo^c, Iucio.araneo@polimi.it M Mameliab, mauro.mameli@unibg.it M. Marengo^a, M.Marengo@brighton.ac.uk

nplexity of the investigation, a be take into the planning of

a School of Computing, Engineering and Mathematics, University of Brighton, BN2 4GJ, Brighton, UK b Università di Pisa, DESTEC, Largo Lazzarino 2, 56122 Pisa, Italy ^c Politecnico di Milano, Dipartimento di Energia, Via Lambruschini 4A, 20158 Milano, Italy

European Space Agency

1. INTRODUCTION

Parabolic flights represent an important tool for short space-related experiments under reduced gravity conditions. During the ballistic flight manoeuvres, the asset investigators have the possibility to operate their experiments, in a laboratory-like environment, where the level of gravity decreases for approximately 20s. A 7.500 parabolic flight rack able to host up to two thermo-fluid dynamics experiments has been designed, realized and qualified during the ESA 66th Parabolic Flight Campaign. This microgravity research platform, is the first UK facility available for such investigations, providing a data acquisition system, cooling system and heating system compliant with Novespace requirements.

2. EXPERIENCES IN PARABOLIC FLIGHT CAMPAIGNS

MAY 2013	MAY 2014	OCT 2014	MAR 2015	OCT 2015	NOV 2016	MAY 2017 A	MAY 2017 B	NOV 2017 A	NOV 2017 B	• Due to the com
ESA PF 58 th Copper Tube Pulsating Heat Pipe D=1.1 mm FC-72	ESA PF 59 th Copper Tube Pulsating Heat Pipe D=1.1 mm FC-72	ESA PF 60 th Copper Plate Flat Pulsating Heat Pipe D=1.7 mm FC-72 PPrime	ESA PF 61st Aluminium Tube Pulsating Heat Pipe D=3 mm FC-72	ESA PF 63rd Aluminium Tube Pulsating Heat Pipe D=3 mm FC-72	ESA PF 65 th Copper Flat Plate Pulsating Heat Pipe D=2.5 mm Self reweting	ESA PF 66 th Copper Tube Pulsating Heat Pipe D=2 mm Ethanol, FC-72	ESA PF 66th Fluid vein stability in Copper Groove D=2 mm. Self rewetting	ESA PF 67th Aluminium Tube Pulsating Heat Pipe D=3 mm. IR, FC-72	ESA PF 67th Aluminium Tube Pulsating Heat Pipe D=3 mm. IR, Ethanol, FC-72	Due to the comparabolic flight re-flight has to account during the activities.
UniBg	UniBg	Polimi	UniBg	UniBg	PPrime	UniBg		UniPi	UniPi	

UniNa

UoB

UniP Polimi UoB

UniP

Polimi

UniPi

Polimi

UniPi

Polimi

UniBg

UniPi

Polimi

Polimi

UoB

UoB

Polimi

UoB

Activation of slug/plug flow in Pulsating Heat Pipe under microgravity condition

Images from thermo-fluid dynamic experiments previously tested aboard of Zero-G ESA Parabolic Flights

3. THE EXPERIMENTAL RACK

Sub- syst.	Description	Туре	Function					
1	Test cell	Thermal	Tested device, electric heating and temperature					
			control					
2	Liquid Cooling Loop	Thermal	Heat Sink (300W max, -5°C to +60°C)					
3	Liquid Heating Loop	Thermal	Heat Source (180W max, up to 80°C)					
4	High Speed Camera	Diagnostics	Visualization of transparent sections					
5	ESA MW-IR High Speed	Diagnostics	Visualization and temperature measurement of					
	Camera		IR transparent sections					
6	Power, DAQ, PC	Power and	Power supply, Data acquisition system and					
		Signal acq.	safety control					
7	Rack Structure	Structural	Primary structure					
8	Exp. box	Structural	Double containment and vibration damping					
Experimental box dimensions: 800x600x800mm - Max experiment weight:60Kg								

Hardware Safety Level

Rack during the 66th ESA PFC and rendering of the modification for the 67th and 68th ESA PFC

3. CONCLUSIONS

A modular parabolic flight rack has been designed and realised with the aim of hosting thermo-fluid dynamic experiments from different research teams. The first campaign has highlighted the high adaptability of the system to third part payloads and suggested improvements for the future flights. A tool for microgravity thermo-fluid dynamic related experiments is available for the UK science community and interested companies.