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/Pulsating Heat Pipes are the last frontier of the two-phase passive heat transfer\
devices. Due to their constructive simplicity and high heat transfer capability, PHPs
could represent a new alternative to cooling systems in the near future. But in order to
spread their industrial application in the most various fields, several open questions
should find a proper answer. In this prospective, experimental researches and
Qalidated numerical codes are essential to enlarged the present knowhow. /
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Higher fidelity models require detailed HX modeling with stacking
a + Heat Exchanger Library provides geometry-based heat exchanger models for

system simulation with stacking and inhomogeneously distributed inlet air
* Geometry fully parameterized with range of correlations (heat, dP)
Bridges gap between 1D system and 3D CFD simulations
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Figure 1: Functional model of shell-tube heat-exchanger
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Figure 2: Simulink model for heat-exchanger
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,.F" NUMERICAL MODEL

University of Brighton

The developed numerical tool is an advanced 1D lumped parameters model able to compute both
the steady and the transient performance of PHPs. This tool solves mass momentum and energy
balances assuming confined operating regime a priori and a PHP of constant diameter.

» Vapor is treated as a real gas except during phase changes. Thus its pressure is
function of both temperature and density; density is calculated by definition.

» Vapor may exist in saturated, super-heated and sub-cooled conditions.

» Heterogeneous evaporation and condensation near the wall surface, as well as
homogeneous phase changes through the vapor/liquid interface are directly
integrated within the code by means of specific physical models.

MODELING

» Since the liquid film dynamic has been neglected and classical semi-empirical
correlations cannot be properly used for two-phase oscillating flows in mini channels, a
new correlation for the evaluation of the wall/vapor sensible heat transfer coefficient
has been proposed and tuned against experimental data.

NOVELTIES

4 )
» The numerical model has been implemented in GNU Octave, a licence-free software

oriented to and optimized for scientific calculus.

» Advanced numerical techniques and specific numerical schemes have been adopted

to allow fast simulations and to guarantee numerical accuracy and stability.
\_ J

NUMERICAL
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NUMERICAL MODEL
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The SOLID MODEL describes the thermal behaviour of the external tube by means of an Eulerian

numerical approach since solid elements are fixed in time. )
\,

" The FLUIDIC MODEL describes the fluidynamics and the thermal behaviour of the internal vapor\
and liquid elements by means of a Lagrangian numerical approach since fluidic elements are

__moving in time. In addition, slugs and plugs may change length and mass due to phase changes. y
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CODE VALIDATION

MICRO-GRAVITY RESULTS — 0.01g
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CODE VALIDATION

HYPER-GRAVITY RESULTS — UP TO 28
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CONCLUSIONS

/The proposed work has two goals: \

(1) from the experimental point of view, it aims to provide
information about the combined effects of gravity and heat input
on PHPs performances;

(2) on the numerical side, it heads for the development of a
numerical tool able to simulate the thermal-hydraulic behaviour

\ of PHPs in steady as well as in transient operative conditions. /




CONCLUSIONS

\of the best numerical tool findable in literature.

(A new, advanced, 1D, lumped parameter numerical code has been\
proposed and validated against experimental data. The main originalities
lay in the suppression of the standard assumption of saturated vapor plugs
as well as in the consequent embedding of heterogeneous and
homogeneous phase changes. Being able to reproduce with high accuracy
both the stationary and the transient behavior of PHPs in several operative
conditions and for different gravity levels, at the moment it represents one

4
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FUTURE DEVELOPMENTS

» The artificial numerical damping detected in horizontal mode should
be mitigated.

» The dynamic of the liquid film should be accounted for by means of
devoted sub-models.

» The correlation used to estimate wall/vapor sensible heat transfer
coefficient should be validated against experimental data coming from
various fluids (different from FC-72) and various filling ratios (different
from 0.5).

» The transition between different flow patterns should be studied and
implemented in devoted sub-models in order to surpass the strong
common simplification of slug flow and being able to detect also critical
operative conditions and operative limits.




THE END....

THE BEGINNING....



CODE VALIDATION

GROUND RESULTS — 1g
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CODE VALIDATION

GROUND RESULTS — 1g
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CONCLUSIONS

A complete characterization from micro to hyper-gravity conditions
(0.01 - 20g) of a lab scale PHP has been proposed, confirming that, in a
2D layout with a relatively high number of channels, gravity plays an
important effect on the PHP thermal behavior.

In vertical mode, the absence of gravity drastically reduces the
thermal performance of the device, while augmented gravity levels
may either assist or inhibit the flow motion.

For each power input there is a gravity value below which hyper-
gravity yields to better thermal performance, over which it leads to
different kinds of instability.

If the fluid pumping forces resulting from the heating power can
compete with the acceleration forces the system only undergoes local
frequent stopover phenomena (Transient Thermal Instability),
otherwise the wall temperatures increase and settle to higher levels
(Thermal Crisis).
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CASE 0: GROUND TESTS

GROUND RESULTS — 1g
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On ground, vertical and horizontal orientations show very different behaviors confirming that, in a\
perfect 2D layout with a relatively high number of channels, gravity plays an important effect on
the PHP thermal behavior since it improves the fluidic circulation. The thermal resistance of the
\horizontal PHP is about two times higher than the one estimated for the vertical device. y
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L : ;‘m CASE A: HYPER-GRAVITY

Bottom Heated Mode, 10g
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