Break-up Mechanisms and Conditions for Vapour Slugs Within Mini-Channels

Dr. Manolia Andredaki, Dr. Anastasios Georgoulas, Dr. Nicolas Miche, Prof. Marco Marengo

INWIP - "Innovative Wickless Heat Pipe Systems for Ground and Space Applications" Microgravity Applications Promotion Programme for the International Space Station (MAP)

HyHP-Novel Hybrid Heat Pipe for Space and Ground Applications Engineering and Physical Sciences Research Council (EPSRC)

ADVANCED PROPULSION

ermal Efficiency Spoke

alpha 1 0.25 0.5 0.75

Time: 0.00 ms

University of Brighton

✓ BACKGROUND & MOTIVATION
✓ NUMERICAL FRAMEWORK
✓RESULTS
✓ CONCLUSIONS
✓ FUTURE WORK

UNIVERSITY OF BRIGHTON ICE Thermal Efficiency Spoke

UNIVERSITY OF BRIGHTON ICE Thermal Efficiency Spoke

BACKGROUND & MOTIVATION

- Heat transfer systems have become somewhat ubiquitous; they are to be found in electronic devices, in energy and transportation and in households in general.
- The demand for increasingly higher performances, has pushed researchers and engineers to develop a new generation of systems based on the local phase-change of a working fluid.
- The latent heat associated to the phase change of a fluid is indeed a very efficient way of absorbing or releasing heat in such heat transfer systems.
- Efficient thermal control especially in space applications and the reduction of moving mechanical elements is of crucial importance and *two-phase closed-loop systems* can meet these requirements.

BACKGROUND & MOTIVATION

- The use of heat pipes consisting of mini- and micro-channels is a promising alternative to conventional heat transfer systems, due to their much higher heat flux removal rates and the possibility of direct integration into the heat-dissipating substrates.
- ✤ A heat pipe device is mainly based on capillarity and phase-change of an operating/working fluid.

JK Heat Transfer Conference 201

UNIVERSITY OF BRIGHTON ICE Thermal Efficiency Spoke

NUMERICAL FRAMEWORK

1.0 -1.0 -2.0 2.0 0.0 Y-Axis (x10^-3) Time: 0.300000 msec

2

EPSR(Engineering and Physical Sciences Research Council

ADVANCED PROPULSION

CENTRE UK

UNIVERSITY OF BRIGHTON **ICE Thermal Efficiency Spoke** **University of Brighton**

NUMERICAL FRAMEWORK

Contents lists available at ScienceDirect International Journal of Multiphase Flow

journal homepage: www.elsevier.com/locate/ijmulflow

International Journal of Multiphase Flow 74 (2015) 59-78

Numerical investigation of quasi-static bubble growth and detachment CrossMark from submerged orifices in isothermal liquid pools: The effect of varying fluid properties and gravity levels

A. Georgoulas^{a,b,*}, P. Koukouvinis^{c,d}, M. Gavaises^c, M. Marengo^{a,e}

Article

UK Heat Transfer Conference 2017

An Enhanced VOF Method Coupled with Heat Transfer and Phase Change to Characterise Bubble **Detachment in Saturated Pool Boiling**

Anastasios Georgoulas *, Manolia Andredaki and Marco Marengo

3.248 msec 3.498 msec 3.748 msec 3.998 msec 4.498 msec 4.998 msec

3.2 msec 3.5 msec 3.7 msec 4.0 msec 4.5 msec 5.0 msec

Article

ADVANCED

CENTRE UK

PROPULSION

UNIVERSITY OF BRIGHTON **ICE Thermal Efficiency Spoke**

Sensible Heat Transfer during Droplet Cooling: **Experimental and Numerical Analysis**

Emanuele Teodori¹, Pedro Pontes¹, Ana Moita¹, Anastasios Georgoulas^{2,*}, Marco Marengo² and Antonio Moreira¹

Advanced Engineering Centre

MDPI

UNIVERSITY OF BRIGHTON ICE Thermal Efficiency Spoke

University of Brighton

Identified break-up mechanisms

Effect of applied pressure drop

Effect of surface tension

Effect of initial film thickness

Research Council

Effect of applied heat flux in heated part of the mini-channel

Research Council

RESULTS Dimensionless Analysis

✓ BACKGROUND & MOTIVATION
✓ NUMERICAL FRAMEWORK
✓ RESULTS
✓ CONCLUSIONS
✓ FUTURE WORK

UNIVERSITY OF BRIGHTON ICE Thermal Efficiency Spoke

CONCLUSIONS

- A wide series of parametric simulations have been performed so far, identifying 3 major break-up regimes.
- The numerical simulations revealed some interesting phenomena (e.g. liquid jet penetration, capillary waves) to which the resulting vapour slug break-up can be attributed, something that was not possible to be identified from the experimental high speed images.
- The further post-processing of the results indicates that these break-up regimes can be grouped into appropriate dimensionless flow maps and be predicted by the global flow conditions.
- Such flow maps can be incorporated in the form of sub-models in Lumped Parameter 1D codes to improve their predictability.
- It is interesting that the applied heat flux at the heated section of the channel does not influence the resulting break-up regime.

ADVANCED PROPULSION **CENTRE UK** UNIVERSITY OF BRIGHTON

FUTURE WORK

- More channel diameters and working fluids need to be tested (2D-Axissymetric simulations).
- Slug to Slug interaction simulating a series of vapour slugs separated by liquid plugs (3D simulations).
- Time varying pressure conditions at the ends of the channel, in order to investigate the effect of a pulsating flow field in the identified break-up regimes (3D simulations).

Thank you very much for your attention!

Dr. Manolia Andredaki, Dr. Anastasios Georgoulas, Dr. Nicolas Miche, Prof. Marco Marengo

INWIP - "Innovative Wickless Heat Pipe Systems for Ground and Space Applications" Microgravity Applications Promotion Programme for the International Space Station (MAP)

HyHP-Novel Hybrid Heat Pipe for Space and Ground Applications Engineering and Physical Sciences Research Council (EPSRC)

ADVANCED PROPULSION CENTRE UK

UNIVERSITY OF BRIGHTON ICE Thermal Efficiency Spoke

alpha 1

0.00 0.25 0.5 0.75 1.00

Time: 0.00 ms

